Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The HIV-1 capsid protein C-terminal domain in complex with a virus assembly inhibitor

Abstract

Immature HIV particles bud from infected cells after assembly at the cytoplasmic side of cellular membranes. This assembly is driven by interactions between Gag polyproteins. Mature particles, each containing a characteristic conical core, are later generated by proteolytic maturation of Gag in the virion. The C-terminal domain of the HIV-1 capsid protein (C-CA) has been shown to contain oligomerization determinants essential for particle assembly. Here we report the 1.7-Å-resolution crystal structure of C-CA in complex with a peptide capable of inhibiting immature- and mature-like particle assembly in vitro. The peptide inserts as an amphipathic α-helix into a conserved hydrophobic groove of C-CA, resulting in formation of a compact five-helix bundle with altered dimeric interactions. This structure thus reveals the details of an allosteric site in the HIV capsid protein that can be targeted for antiviral therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Binding of the CAI peptide leads to formation of a five-helix bundle.
Figure 2: The CAI peptide fits into a conserved hydrophobic cavity of C-CA.
Figure 3: CAI binding alters the C-CA dimer interface.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Scarlata, S. & Carter, C. Role of HIV-1 Gag domains in viral assembly. Biochim. Biophys. Acta 1614, 62–72 (2003).

    Article  CAS  Google Scholar 

  2. Wiegers, K. et al. Sequential steps in human immunodeficiency virus particle maturation revealed by alterations of individual Gag polyprotein cleavage sites. J. Virol. 72, 2846–2854 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Accola, M.A., Hoglund, S. & Gottlinger, H.G. A putative alpha-helical structure which overlaps the capsid-p2 boundary in the human immunodeficiency virus type 1 Gag precursor is crucial for viral particle assembly. J. Virol. 72, 2072–2078 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Briggs, J.A. et al. The stoichiometry of Gag protein in HIV-1. Nat. Struct. Mol. Biol. 11, 672–675 (2004).

    Article  CAS  Google Scholar 

  5. Berthet-Colominas, C. et al. Head-to-tail dimers and interdomain flexibility revealed by the crystal structure of HIV-1 capsid protein (p24) complexed with a monoclonal antibody Fab. EMBO J. 18, 1124–1136 (1999).

    Article  CAS  Google Scholar 

  6. Gamble, T.R. et al. Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell 87, 1285–1294 (1996).

    Article  CAS  Google Scholar 

  7. Gitti, R.K. et al. Structure of the amino-terminal core domain of the HIV-1 capsid protein. Science 273, 231–235 (1996).

    Article  CAS  Google Scholar 

  8. Momany, C. et al. Crystal structure of dimeric HIV-1 capsid protein. Nat. Struct. Biol. 3, 763–770 (1996).

    Article  CAS  Google Scholar 

  9. Tang, C., Ndassa, Y. & Summers, M.F. Structure of the N-terminal 283-residue fragment of the immature HIV-1 Gag polyprotein. Nat. Struct. Biol. 9, 537–543 (2002).

    CAS  PubMed  Google Scholar 

  10. Gamble, T.R. et al. Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein. Science 278, 849–853 (1997).

    Article  CAS  Google Scholar 

  11. Worthylake, D.K., Wang, H., Yoo, S., Sundquist, W.I. & Hill, C.P. Structures of the HIV-1 capsid protein dimerization domain at 2.6 A resolution. Acta Crystallogr. D Biol. Crystallogr. 55, 85–92 (1999).

    Article  CAS  Google Scholar 

  12. Li, S., Hill, C.P., Sundquist, W.I. & Finch, J.T. Image reconstructions of helical assemblies of the HIV-1 CA protein. Nature 407, 409–413 (2000).

    Article  CAS  Google Scholar 

  13. Briggs, J.A., Wilk, T., Welker, R., Krausslich, H.-G. & Fuller, S.D. Structural organization of authentic, mature HIV-1 virions and cores. EMBO J. 22, 1707–1715 (2003).

    Article  CAS  Google Scholar 

  14. Nermut, M.V. et al. Further evidence for hexagonal organization of HIV gag protein in prebudding assemblies and immature virus-like particles. J. Struct. Biol. 123, 143–149 (1998).

    Article  CAS  Google Scholar 

  15. Nermut, M.V. et al. Fullerene-like organization of HIV gag-protein shell in virus-like particles produced by recombinant baculovirus. Virology 198, 288–296 (1994).

    Article  CAS  Google Scholar 

  16. Huseby, D., Barklis, R.L., Alfadhli, A. & Barklis, E. Assembly of human immunodeficiency virus precursor Gag proteins. J. Biol. Chem. 280, 17664–17670 (2005).

    Article  CAS  Google Scholar 

  17. Ganser-Pornillos, B.K., von Schwedler, U.K., Stray, K.M., Aiken, C. & Sundquist, W.I. Assembly properties of the human immunodeficiency virus type 1 CA protein. J. Virol. 78, 2545–2552 (2004).

    Article  CAS  Google Scholar 

  18. von Schwedler, U.K., Stray, K.M., Garrus, J.E. & Sundquist, W.I. Functional surfaces of the human immunodeficiency virus type 1 capsid protein. J. Virol. 77, 5439–5450 (2003).

    Article  CAS  Google Scholar 

  19. Sticht, J. et al. A peptide inhibitor of HIV-1 assembly in vitro. Nat. Struct. Mol. Biol. 12, 671–677 (2005).

    Article  CAS  Google Scholar 

  20. Bahadur, R.P., Chakrabarti, P., Rodier, F. & Janin, J. A dissection of specific and non-specific protein-protein interfaces. J. Mol. Biol. 336, 943–955 (2004).

    Article  CAS  Google Scholar 

  21. Sarafianos, S.G., Das, K., Hughes, S.H. & Arnold, E. Taking aim at a moving target: designing drugs to inhibit drug-resistant HIV-1 reverse transcriptases. Curr. Opin. Struct. Biol. 14, 716–730 (2004).

    Article  CAS  Google Scholar 

  22. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  23. Storoni, L.C., McCoy, A.J. & Read, R.J. Likelihood-enhanced fast rotation functions. Acta Crystallogr. D Biol. Crystallogr. 60, 432–438 (2004).

    Article  Google Scholar 

  24. Brünger, A. & Rice, L. Crystallographic refinement by simulated annealing: methods and applications. Methods Enzymol. 277, 243–269 (1997).

    Article  Google Scholar 

  25. Jones, T.A. & Kjeldgaard, M. Electron-density map interpretation. Methods Enzymol. 277, 173–208 (1997).

    Article  CAS  Google Scholar 

  26. Collaborative Computational Project. Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  27. Lee, B.M. & Richards, F.M. The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55, 379–400 (1971).

    Article  CAS  Google Scholar 

  28. Carson, M. Ribbons. Methods Enzymol. 277, 493–505 (1997).

    Article  CAS  Google Scholar 

  29. Glaser, F. et al. ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics 19, 163–164 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Van Tilbeurgh for access to the robotized platform of the Yeast Structural Genomics Laboratory and J. Werner, P. Vachette and J. Janin for helpful discussions. This work was supported by the Agence Nationale pour la Recherche contre le SIDA, the Deutsche Forschungsgemeinschaft, the Centre National de la Recherche Scientifique, the Institut National de la Recherche Agronomique, the SESAME program of Région Ile-de-France and the French/German PROCOPE scientific exchange program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Félix A Rey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Buried surfaces at dimer and C-CA/CAI interfaces. (PDF 12 kb)

Supplementary Table 2

Dimer contacts and C-CA/CAI interactions. (PDF 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ternois, F., Sticht, J., Duquerroy, S. et al. The HIV-1 capsid protein C-terminal domain in complex with a virus assembly inhibitor. Nat Struct Mol Biol 12, 678–682 (2005). https://doi.org/10.1038/nsmb967

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb967

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing