Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hemifusion in SNARE-mediated membrane fusion

Abstract

SNAREs are essential for intracellular membrane fusion. Using EPR, we determined the structure of the transmembrane domain (TMD) of the vesicle (v)-SNARE Snc2p involved in trafficking in yeast. Structural features of the TMD were used to design a v-SNARE mutant in which about half of the TMD was deleted. Liposomes containing this mutant induced outer leaflet mixing but not inner leaflet mixing when incubated with liposomes containing target membrane (t)-SNAREs. Hemifusion was also detected with wild-type SNAREs when low protein concentrations were reconstituted. Thus, these results show that SNARE-mediated fusion can transit through a hemifusion intermediate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Site-directed spin labeling and the EPR analysis of Snc2p.
Figure 2: Structural determination of the Snc2p TMD using EPR.
Figure 3: Total and inner leaflet lipid mixing for Snc2p and its mutants.
Figure 4: Total and inner leaflet lipid mixing assays at low protein concentrations.

Similar content being viewed by others

References

  1. White, J.M. Membrane fusion. Science 258, 917–924 (1992).

    Article  CAS  Google Scholar 

  2. Skehel, J.J. & Wiley, D.C. Coiled coils in both intracellular vesicle and viral membrane fusion. Cell 95, 871–874 (1998).

    Article  CAS  Google Scholar 

  3. Chan, D.C. & Kim, P.S. HIV entry and its inhibition. Cell 93, 681–684 (1998).

    Article  CAS  Google Scholar 

  4. Jahn, R., Lang, T. & Sudhof, T.C. Membrane fusion. Cell 112, 519–533 (2003).

    Article  CAS  Google Scholar 

  5. Earp, L.J., Delos, S.E., Park, H.E. & White, J.M. The many mechanisms of viral membrane fusion proteins. Curr. Top. Microbiol. Immunol. 285, 25–66 (2005).

    CAS  PubMed  Google Scholar 

  6. Chernomordik, L.V. & Kozlov, M.M. Protein-lipid interplay in fusion and fission of biological membranes. Annu. Rev. Biochem. 72, 175–207 (2003).

    Article  CAS  Google Scholar 

  7. Kemble, G.W., Danieli, T. & White, J.M. Lipid-anchored influenza hemagglutinin promotes hemifusion, not complete fusion. Cell 76, 383–391 (1994).

    Article  CAS  Google Scholar 

  8. Melikyan, G.B., Markosyan, R.M., Roth, M.G. & Cohen, F.S. A point mutation in the transmembrane domain of the hemagglutinin of influenza virus stabilizes a hemifusion intermediate that can transit to fusion. Mol. Biol. Cell 11, 3765–3775 (2000).

    Article  CAS  Google Scholar 

  9. Armstrong, R.T., Kushnir, A.S. & White, J.M. The transmembrane domain of influenza hemagglutinin exhibits a stringent length requirement to support the hemifusion to fusion transition. J. Cell Biol. 151, 425–437 (2000).

    Article  CAS  Google Scholar 

  10. Yang, L. & Huang, H.W. Observation of a membrane fusion intermediate structure. Science 297, 1877–1879 (2002).

    Article  CAS  Google Scholar 

  11. Rothman, J.E. Mechanisms of intracellular protein transport. Nature 372, 55–63 (1994).

    Article  CAS  Google Scholar 

  12. Chen, Y.A., Scales, S.J., Patel, S.M., Doung, Y.C. & Scheller, R.H. SNARE complex formation is triggered by Ca2+ and drives membrane fusion. Cell 97, 165–174 (1999).

    Article  CAS  Google Scholar 

  13. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998).

    Article  CAS  Google Scholar 

  14. McNew, J.A. et al. Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 407, 153–159 (2000).

    Article  CAS  Google Scholar 

  15. Han, X., Wang, C.T., Bai, J., Chapman, E.R. & Jackson, M.B. Transmembrane segments of syntaxin line the fusion pore of Ca2+-triggered exocytosis. Science 304, 289–292 (2004).

    Article  CAS  Google Scholar 

  16. Grote, E., Baba, M., Ohsumi, Y. & Novick, P.J. Geranylgeranylated SNAREs are dominant inhibitors of membrane fusion. J. Cell Biol. 151, 453–466 (2000).

    Article  CAS  Google Scholar 

  17. Chernomordik, L.V. et al. Lysolipids reversibly inhibit Ca(2+)-, GTP- and pH-dependent fusion of biological membranes. FEBS Lett. 318, 71–76 (1993).

    Article  CAS  Google Scholar 

  18. Peters, C. et al. Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion. Nature 409, 581–588 (2001).

    Article  CAS  Google Scholar 

  19. McNew, J.A. et al. Close is not enough: SNARE-dependent membrane fusion requires an active mechanism that transduces force to membrane anchors. J. Cell Biol. 150, 105–117 (2000).

    Article  CAS  Google Scholar 

  20. Hubbell, W.L., Gross, A., Langen, R. & Lietzow, M.A. Recent advances in site-directed spin labeling of proteins. Curr. Opin. Struct. Biol. 8, 649–656 (1998).

    Article  CAS  Google Scholar 

  21. Rabenstein, M.D. & Shin, Y.K. HIV-1 gp41 tertiary structure studied by EPR spectroscopy. Biochemistry 35, 13922–13928 (1996).

    Article  CAS  Google Scholar 

  22. McHaourab, H.S., Lietzow, M.A., Hideg, K. & Hubbell, W.L. Motion of spin-labeled side chains in T4 lysozyme. Correlation with protein structure and dynamics. Biochemistry 35, 7692–7704 (1996).

    Article  CAS  Google Scholar 

  23. Altenbach, C., Greenhalgh, D.A., Khorana, H.G. & Hubbell, W.L. A collision gradient method to determine the immersion depth of nitroxides in lipid bilayers: application to spin-labeled mutants of bacteriorhodopsin. Proc. Natl. Acad. Sci. USA 91, 1667–1671 (1994).

    Article  CAS  Google Scholar 

  24. Macosko, J.C., Kim, C.H. & Shin, Y.K. The membrane topology of the fusion peptide region of influenza hemagglutinin determined by spin-labeling EPR. J. Mol. Biol. 267, 1139–1148 (1997).

    Article  CAS  Google Scholar 

  25. Chen, Y., Xu, Y., Zhang, F. & Shin, Y.K. Constitutive versus regulated SNARE assembly: a structural basis. EMBO J. 23, 681–689 (2004).

    Article  CAS  Google Scholar 

  26. Rossi, G., Salminen, A., Rice, L.M., Brunger, A.T. & Brennwald, P. Analysis of a yeast SNARE complex reveals remarkable similarity to the neuronal SNARE complex and a novel function for the C terminus of the SNAP-25 homolog, Sec9. J. Biol. Chem. 272, 16610–16617 (1997).

    Article  CAS  Google Scholar 

  27. Meers, P., Ali, S., Erukulla, R. & Janoff, A.S. Novel inner monolayer fusion assays reveal differential monolayer mixing associated with cation-dependent membrane fusion. Biochim. Biophys. Acta 1467, 227–243 (2000).

    Article  CAS  Google Scholar 

  28. Chernomordik, L.V., Frolov, V.A., Leikina, E., Bronk, P. & Zimmerberg, J. The pathway of membrane fusion catalyzed by influenza hemagglutinin: restriction of lipids, hemifusion, and lipidic fusion pore formation. J. Cell Biol. 140, 1369–1382 (1998).

    Article  CAS  Google Scholar 

  29. Mittal, A., Leikina, E., Chernomordik, L.V. & Bentz, J. Kinetically differentiating influenza hemagglutinin fusion and hemifusion machines. Biophys. J. 85, 1713–1724 (2003).

    Article  CAS  Google Scholar 

  30. Poirier, M.A. et al. The synaptic SNARE complex is a parallel four-stranded helical bundle. Nat. Struct. Biol. 5, 765–769 (1998).

    Article  CAS  Google Scholar 

  31. Sutton, R.B., Fasshauer, D., Jahn, R. & Brunger, A.T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 395, 347–353 (1998).

    Article  CAS  Google Scholar 

  32. Kweon, D.H., Kim, C.S. & Shin, Y.K. The membrane-dipped neuronal SNARE complex: a site-directed spin labeling electron paramagnetic resonance study. Biochemistry 41, 9264–9268 (2002).

    Article  CAS  Google Scholar 

  33. Kweon, D.H., Kim, C.S. & Shin, Y.K. Insertion of the membrane-proximal region of the neuronal SNARE coiled coil into the membrane. J. Biol. Chem. 278, 12367–12373 (2003).

    Article  CAS  Google Scholar 

  34. Tamm, L.K. Hypothesis: spring-loaded boomerang mechanism of influenza hemagglutinin-mediated membrane fusion. Biochim. Biophys. Acta 1614, 14–23 (2003).

    Article  CAS  Google Scholar 

  35. Kweon, D.H., Kim, C.S. & Shin, Y.K. Regulation of neuronal SNARE assembly by the membrane. Nat. Struct. Biol. 10, 440–447 (2003).

    Article  CAS  Google Scholar 

  36. Kweon, D.H. et al. Probing domain swapping for the neuronal SNARE complex with electron paramagnetic resonance. Biochemistry 41, 5449–5452 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support for this work was provided by the US National Institutes of Health (Y-.K.S) and the US National Science Foundation and the Robert A. Welch Foundation (J.A.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeon-Kyun Shin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Lipid-mixing assay for SNARE-free PE-containing vesicles (PDF 287 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Zhang, F., Su, Z. et al. Hemifusion in SNARE-mediated membrane fusion. Nat Struct Mol Biol 12, 417–422 (2005). https://doi.org/10.1038/nsmb921

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb921

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing