Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Insights into hRPA32 C-terminal domain–mediated assembly of the simian virus 40 replisome

Abstract

Simian virus 40 (SV40) provides a model system for the study of eukaryotic DNA replication, in which the viral protein, large T antigen (Tag), marshals human proteins to replicate the viral minichromosome. SV40 replication requires interaction of Tag with the host single-stranded DNA-binding protein, replication protein A (hRPA). The C-terminal domain of the hRPA32 subunit (RPA32C) facilitates initiation of replication, but whether it interacts with Tag is not known. Affinity chromatography and NMR revealed physical interaction between hRPA32C and the Tag origin DNA–binding domain, and a structural model of the complex was determined. Point mutations were then designed to reverse charges in the binding sites, resulting in substantially reduced binding affinity. Corresponding mutations introduced into intact hRPA impaired initiation of replication and primosome activity, implying that this interaction has a critical role in assembly and progression of the SV40 replisome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Monoclonal antibody 34A recognizes hRPA32C and inhibits SV40 replication.
Figure 2: The interaction of hRPA32C with Tag-OBD.
Figure 3: Effects of DNA binding and mutations on the interaction between hRPA32C and Tag-OBD.
Figure 4: Mutations in hRPA32C that weaken interaction with Tag are defective in initiation of SV40 DNA replication.
Figure 5: hRPA32C is needed for primosome activity, but not for primer extension.
Figure 6: Model for SV40 primosome activity on hRPA-coated ssDNA.

Similar content being viewed by others

References

  1. Fanning, E. & Knippers, R. Structure and function of simian virus 40 large tumor antigen. Annu. Rev. Biochem. 61, 55–85 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Bullock, P.A. The initiation of simian virus 40 DNA replication in vitro. Crit. Rev. Biochem. Mol. Biol. 32, 503–568 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Simmons, D.T. SV40 large T antigen functions in DNA replication and transformation. Adv. Virus Res. 55, 75–134 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Stenlund, A. Initiation of DNA replication: lessons from viral initiator proteins. Nat. Rev. Mol. Cell Biol. 4, 777–785 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Stauffer, M.E. & Chazin, W.J. Structural mechanisms of DNA replication, repair, and recombination. J. Biol. Chem. 279, 30915–30918 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Wold, M.S. Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu. Rev. Biochem. 66, 61–92 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Iftode, C., Daniely, Y. & Borowiec, J.A. Replication protein A (RPA): the eukaryotic SSB. Crit. Rev. Biochem. Mol. Biol. 34, 141–180 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Bochkarev, A. & Bochkareva, E. From RPA to BRCA2: lessons from single-stranded DNA binding by the OB-fold. Curr. Opin. Struct. Biol. 14, 36–42 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Mer, G., Bochkarev, A., Chazin, W.J. & Edwards, A.M. Three-dimensional structure and function of replication protein A. Cold Spring Harb. Symp. Quant. Biol. 65, 193–200 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Weisshart, K. et al. Partial proteolysis of SV40 T antigen reveals intramolecular contacts between domains and conformation changes upon hexamer assembly. J. Biol. Chem. 279, 38943–38951 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Gai, D. et al. Insights into the oligomeric states, conformational changes and helicase activities of SV40 large tumor antigen. J. Biol. Chem. 279, 38952–38959 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Dornreiter, I. et al. Interaction of DNA polymerase α-primase with cellular replication protein A and SV40 T antigen. EMBO J. 11, 769–776 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Melendy, T. & Stillman, B. An interaction between replication protein A and SV40 T antigen appears essential for primosome assembly during SV40 DNA replication. J. Biol. Chem. 268, 3389–3395 (1993).

    CAS  PubMed  Google Scholar 

  14. Collins, K.L. & Kelly, T.J. Effects of T antigen and replication protein A on the initiation of DNA synthesis by DNA polymerase α-primase. Mol. Cell. Biol. 11, 2108–2115 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Weisshart, K., Taneja, P. & Fanning, E. The replication protein A binding site in simian virus 40 (SV40) T antigen and its role in the initial steps of SV40 DNA replication. J. Virol. 72, 9771–9781 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Braun, K.A., Lao, Y., He, Z., Ingles, C.J. & Wold, M.S. Role of protein-protein interactions in the function of replication protein A (RPA): RPA modulates the activity of DNA polymerase α by multiple mechanisms. Biochemistry 36, 8443–8454 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Mer, G. et al. Structural basis for the recognition of DNA repair proteins UNG2, XPA, and RAD52 by replication factor A. Cell 103, 449–456 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Lee, S.H. & Kim, D.K. The role of the 34-kDa subunit of human replication protein A in simian virus 40 DNA replication in vitro. J. Biol. Chem. 270, 12801–12807 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Kenny, M.K., Schlegel, U., Furneaux, H. & Hurwitz, J. The role of human single-stranded DNA binding protein and its individual subunits in simian virus 40 DNA replication. J. Biol. Chem. 265, 7693–7700 (1990)

    CAS  PubMed  Google Scholar 

  20. Matsumoto, T., Eki, T. & Hurwitz, J. Studies on the initiation and elongation reactions in the simian virus 40 DNA replication system. Proc. Natl. Acad. Sci. USA 87, 9712–9716 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Arunkumar, A.I., Stauffer, M.E., Bochkareva, E., Bochkarev, A. & Chazin, W.J. Independent and coordinated functions of replication protein A tandem high affinity single-stranded DNA binding domains. J. Biol. Chem. 278, 41077–41082 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Luo, X., Sanford, D.G., Bullock, P.A. & Bachovchin, W.W. Solution structure of the origin DNA–binding domain of SV40 T-antigen. Nat. Struct. Biol. 3, 1034–1039 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Wun-Kim, K. et al. The DNA-binding domain of simian virus 40 tumor antigen has multiple functions. J. Virol. 67, 7608–7611 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Simmons, D.T., Loeber, G. & Tegtmeyer, P. Four major sequence elements of simian virus 40 large T antigen coordinate its specific and nonspecific DNA binding. J. Virol. 64, 1973–1983 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bradshaw, E.M. et al. T antigen origin-binding domain of simian virus 40: determinants of specific DNA binding. Biochemistry 43, 6928–6936 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Titolo, S., Welchner, E., White, P.W. & Archambault, J. Characterization of the DNA-binding properties of the origin-binding domain of simian virus 40 large T antigen by fluorescence anisotropy. J. Virol. 77, 5512–5518 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yuzhakov, A., Kelman, Z., Hurwitz, J. & O'Donnell, M. Multiple competition reactions for RPA order the assembly of the DNA polymerase δ holoenzyme. EMBO J. 18, 6189–6199 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Santocanale, C., Neecke, H., Longhese, M.P., Lucchini, G. & Plevani, P. Mutations in the gene encoding the 34 kDa subunit of yeast replication protein A cause defective S phase progression. J. Mol. Biol. 254, 595–607 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Daughdrill, G.W. et al. Chemical shift changes provide evidence for overlapping single-stranded DNA- and XPA-binding sites on the 70 kDa subunit of human replication protein A. Nucleic Acids Res. 31, 4176–4183 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jackson, D., Dhar, K., Wahl, J.K., Wold, M.S. & Borgstahl, G.E. Analysis of the human replication protein A:Rad52 complex: evidence for crosstalk between RPA32, RPA70, Rad52 and DNA. J. Mol. Biol. 321, 133–148 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Kowalczykowski, S.C. Some assembly required. Nat. Struct. Biol. 7, 1087–1089 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Blackwell, L.J. & Borowiec, J.A. Human replication protein A binds single-stranded DNA in two distinct complexes. Mol. Cell. Biol. 14, 3993–4001 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Blackwell, L.J., Borowiec, J.A. & Mastrangelo, I.A. Single-stranded-DNA binding alters human replication protein A structure and facilitates interaction with DNA-dependent protein kinase. Mol. Cell. Biol. 16, 4798–4807 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Iftode, C. & Borowiec, J.A. 5′→3′ molecular polarity of human replication protein A (RPA) binding to pseudo-origin DNA substrates. Biochemistry 39, 11970–11981 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Bastin-Shanower, S.A. & Brill, S.J. Functional analysis of the four DNA binding domains of replication protein A. The role of RPA2 in ssDNA binding. J. Biol. Chem. 276, 36446–36453 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. de Laat, W.L. et al. DNA-binding polarity of human replication protein A positions nucleases in nucleotide excision repair. Genes Dev. 12, 2598–2609 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ott, R.D., Wang, Y. & Fanning, E. Mutational analysis of simian virus 40 T-antigen primosome activities in viral DNA replication. J. Virol. 76, 5121–5130 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Henricksen, L.A., Umbricht, C.B. & Wold, M.S. Recombinant replication protein A: expression, complex formation, and functional characterization. J. Biol. Chem. 269, 11121–11132 (1994).

    CAS  PubMed  Google Scholar 

  39. Pervushin, K.V., Riek, R., Wider, G. & Wuthrich, K. Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl. Acad. Sci. USA 94, 12366–12371 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sass, H.J., Musco, G., Stahl, S.J., Wingfield, P.T. & Grzesiek, S. Solution NMR of proteins within polyacrylamide gels: diffusional properties and residual alignment by mechanical stress or embedding of oriented purple membranes. J. Biomol. NMR 18, 303–309 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Tycko, R., Blanco, F.J. & Ishii, Y. Alignment of biopolymers in strained gels: a new way to create detectable dipole-dipole couplings in high-resolution biomolecular NMR. J. Am. Chem. Soc. 122, 9340–9349 (2000).

    Article  CAS  Google Scholar 

  42. Bax, A. Weak alignment offers new NMR opportunities to study protein structure and dynamics. Protein Sci. 12, 1–16 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zweckstetter, M. & Bax, A. Prediction of sterically induced alignment in a dilute liquid crystalline phase: aid to protein structure determination by NMR. J. Am. Chem. Soc. 122, 3791–3792 (2000)

    Article  CAS  Google Scholar 

  44. Dominguez, C., Boelens, R. & Bonvin, A.M. HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 125, 1731–1737 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Koradi, R., Billeter, M. & Wuthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55, 29–32 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Laskowski, R.A., Rullman, J.A., MacArthur, M.W., Kaptein, R. & Thornton, J.M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Huang, S.G., Weisshart, K., Gilbert, I. & Fanning, E. Stoichiometry and mechanism of assembly of SV40 T antigen complexes with the viral origin of DNA replication and DNA polymerase α-primase. Biochemistry 37, 15345–15352 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Simmons, D.T., Gai, D., Parsons, R., Debes, A. & Roy, R. Assembly of the replication initiation complex on SV40 origin DNA. Nucleic Acids Res. 32, 1103–1112 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Waga, S. & Stillman, B. The DNA replication fork in eukaryotic cells. Annu. Rev. Biochem. 67, 721–751 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Bhattacharya, B. Dattilo, L. Douthitt, G. Hubbell, J. Jacob, M. Karra, M. Kenny, V. Klymovych, S. Meyn, C.S. Newlon, C. Sanders, L. Schwertman, E.M. Warren, D.R. Williams and M.S. Wold for valuable advice and assistance. Accelrys provided a gift of NMR software. Financial support is gratefully acknowledged from the US National Institutes of Health for operating grants and support to the Vanderbilt-Ingram Cancer Center and the Vanderbilt Center in Molecular Toxicology, as well as from the Howard Hughes Medical Institute Professors Program (to E.F.) and Vanderbilt University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ellen Fanning or Walter J Chazin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Mapping the Tag-OBD-binding site of RPA32C. (PDF 553 kb)

Supplementary Fig. 2

Mapping the RPA32C-binding site of Tag-OBD. (PDF 610 kb)

Supplementary Fig. 3

NMR analysis of side chains at the intermolecular surface. (PDF 280 kb)

Supplementary Fig. 4

NMR chemical shift analysis of the interaction of Tag-OBD with RPA32C. (PDF 287 kb)

Supplementary Fig. 5

Sequence and surface comparison of yRP32C and hRPA32C. (PDF 795 kb)

Supplementary Fig. 6

Characterization of hRPAy32C and hRPAΔ223. (PDF 81 kb)

Supplementary Fig. 7

Quantitative comparison of wild-type and mutant RPA in replication assays. (PDF 65 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arunkumar, A., Klimovich, V., Jiang, X. et al. Insights into hRPA32 C-terminal domain–mediated assembly of the simian virus 40 replisome. Nat Struct Mol Biol 12, 332–339 (2005). https://doi.org/10.1038/nsmb916

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb916

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing