Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SUMO modification of the ubiquitin-conjugating enzyme E2-25K

Abstract

Post-translational modification with small ubiquitin-related modifier (SUMO) alters the function of many proteins, but the molecular mechanisms and consequences of this modification are still poorly defined. During a screen for novel SUMO1 targets, we identified the ubiquitin-conjugating enzyme E2-25K (Hip2). SUMO attachment severely impairs E2-25K ubiquitin thioester and unanchored ubiquitin chain formation in vitro. Crystal structures of E2-25K(1–155) and of the E2-25K(1–155)–SUMO conjugate (E2-25K*SUMO) indicate that SUMO attachment interferes with E1 interaction through its location on the N-terminal helix. The SUMO acceptor site in E2-25K, Lys14, does not conform to the consensus site found in most SUMO targets (ΨKXE), and functions only in the context of an α-helix. In contrast, adjacent SUMO consensus sites are modified only when in unstructured peptides. The demonstration that secondary structure elements are part of SUMO attachment signals could contribute to a better prediction of SUMO targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: E2-25K is SUMOylated in vitro and in vivo.
Figure 2: Sumoylation of E2-25K inhibits ubiquitin thioester formation.
Figure 3: Crystal structure of SUMO-modified E2-25K.
Figure 4: SUMO target sites are defined by their structural context.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Pickart, C.M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Passmore, L.A. & Barford, D. Getting into position: the catalytic mechanisms of protein ubiquitylation. Biochem. J. 379, 513–525 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pichler, A. & Melchior, F. SUMO E3 ligases. In SUMOylation. Molecular Biology and Biochemistry (ed. Van Wilson, G.) (Horizon Press, Norwich, UK, 2004).

    Google Scholar 

  4. Johnson, E.S. Protein modification by SUMO. Annu. Rev. Biochem. 73, 355–382 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Macauley, M.S. et al. Structural and dynamic independence of isopeptide-linked RanGAP1 and SUMO-1. J. Biol. Chem. 279, 49131–49137 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Chen, Z. & Pickart, C.M. A 25-kilodalton ubiquitin carrier protein (E2) catalyzes multi-ubiquitin chain synthesis via lysine 48 of ubiquitin. J. Biol. Chem. 265, 21835–21842 (1990).

    CAS  PubMed  Google Scholar 

  7. Song, S. et al. Essential role of E2-25K/Hip-2 in mediating amyloid-β neurotoxicity. Mol. Cell 12, 553–563 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Kalchman, M.A. et al. Huntingtin is ubiquitinated and interacts with a specific ubiquitin-conjugating enzyme. J. Biol. Chem. 271, 19385–19394 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Lelouard, H. et al. Dendritic cell aggresome-like induced structures are dedicated areas for ubiquitination and storage of newly synthesized defective proteins. J. Cell Biol. 164, 667–675 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Girdwood, D. et al. P300 transcriptional repression is mediated by SUMO modification. Mol. Cell 11, 1043–1054 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Hardeland, U., Steinacher, R., Jiricny, J. & Schar, P. Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. EMBO J. 21, 1456–1464 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hoege, C., Pfander, B., Moldovan, G.L., Pyrowolakis, G. & Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135–141 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Huang, T.T., Wuerzberger-Davis, S.M., Wu, Z.H. & Miyamoto, S. Sequential modification of NEMO/IKKγ by SUMO-1 and ubiquitin mediates NF-κB activation by genotoxic stress. Cell 115, 565–576 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Haldeman, M.T., Xia, G., Kasperek, E.M. & Pickart, C.M. Structure and function of ubiquitin conjugating enzyme E2-25K: the tail is a core-dependent activity element. Biochemistry 36, 10526–10537 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Hamilton, K.S. et al. Structure of a conjugating enzyme-ubiquitin thiolester intermediate reveals a novel role for the ubiquitin tail. Structure 9, 897–904 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Cook, W.J., Jeffrey, L.C., Kasperek, E. & Pickart, C.M. Structure of tetraubiquitin shows how multiubiquitin chains can be formed. J. Mol. Biol. 236, 601–609 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Phillips, C.L., Thrower, J., Pickart, C.M. & Hill, C.P. Structure of a new crystal form of tetraubiquitin. Acta Crystallogr. D 57, 341–344 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Hu, M. et al. Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Cell 111, 1041–1054 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Mossessova, E. & Lima, C.D. Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol. Cell 5, 865–876 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Walden, H. et al. The structure of the APPBP1–UBA3–NEDD8–ATP complex reveals the basis for selective ubiquitin-like protein activation by an E1. Mol. Cell 12, 1427–1437 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Sullivan, M.L. & Vierstra, R.D. Cloning of a 16-kDa ubiquitin carrier protein from wheat and Arabidopsis thaliana. Identification of functional domains by in vitro mutagenesis. J. Biol. Chem. 266, 23878–23885 (1991).

    CAS  PubMed  Google Scholar 

  22. Bencsath, K.P., Podgorski, M.S., Pagala, V.R., Slaughter, C.A. & Schulman, B.A. Identification of a multifunctional binding site on Ubc9p required for Smt3p conjugation. J. Biol. Chem. 277, 47938–47945 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Huang, D.T. et al. A unique E1-E2 interaction required for optimal conjugation of the ubiquitin-like protein NEDD8. Nat. Struct. Mol. Biol. 11, 927–935 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sampson, D.A., Wang, M. & Matunis, M.J. The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification. J. Biol. Chem. 276, 21664–21669 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Bernier-Villamor, V., Sampson, D.A., Matunis, M.J. & Lima, C.D. Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell 108, 345–356 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Lin, D. et al. Identification of a substrate recognition site on Ubc9. J. Biol. Chem. 277, 21740–21748 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Huang, L. et al. Structure of an E6AP–UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. Science 286, 1321–1326 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Cope, G.A. & Deshaies, R.J. COP9 signalosome: a multifunctional regulator of SCF and other cullin-based ubiquitin ligases. Cell 114, 663–671 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Wolf, D.A., Zhou, C. & Wee, S. The COP9 signalosome: an assembly and maintenance platform for cullin ubiquitin ligases? Nat. Cell Biol. 5, 1029–1033 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Mahajan, R., Delphin, C., Guan, T., Gerace, L. & Melchior, F. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88, 97–107 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Pichler, A., Gast, A., Seeler, J.S., Dejean, A. & Melchior, F. The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108, 109–120 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Haldeman, M.T., Finley, D. & Pickart, C.M. Dynamics of ubiquitin conjugation during erythroid differentiation in vitro. J. Biol. Chem. 270, 9507–9516 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Gobom, J., Nordhoff, E., Mirgorodskaya, E., Ekman, R. & Roepstorff, P. Sample purification and preparation technique based on nano-scale reversed-phase columns for the sensitive analysis of complex peptide mixtures by matrix-assisted laser desorption/ionization mass spectrometry. J. Mass Spectrom. 34, 105–116 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Collaborative Computational Project 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  36. Perrakis, A., Morris, R. & Lamzin, V.S. Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol. 6, 458–463 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  38. Pickart, C.M. & Vella, A.T. Levels of active ubiquitin carrier proteins decline during erythroid maturation. J. Biol. Chem. 263, 12028–12035 (1988).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our special thanks go to S. Swaminathan, C. Pickart, L. Hengst, A. Perrakis and members of the labs for stimulating discussions, T. Buesgen for her advice on GST-SUMO1 pull-downs, P. Celie for the CD experiments, H. Langedijk of Pepscan for the peptide synthesis, and A. Klanner, J. Vordemann and E. Stieger for excellent technical assistance. C. Pickart, N. Dantuma, A. Geerlof and R. Hay are gratefully acknowledged for providing reagents.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrea Pichler or Titia K Sixma.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Conventional SUMO sites in E2-25K structure. (PDF 1777 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pichler, A., Knipscheer, P., Oberhofer, E. et al. SUMO modification of the ubiquitin-conjugating enzyme E2-25K. Nat Struct Mol Biol 12, 264–269 (2005). https://doi.org/10.1038/nsmb903

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb903

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing