Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the calcium-rich signature domain of human thrombospondin-2

Abstract

Thrombospondins (THBSs) are secreted glycoproteins that have key roles in interactions between cells and the extracellular matrix. Here, we describe the 2.6-Å-resolution crystal structure of the glycosylated signature domain of human THBS2, which includes three epidermal growth factor–like modules, 13 aspartate-rich repeats and a lectin-like module. These elements interact extensively to form three structural regions termed the stalk, wire and globe. The THBS2 signature domain is stabilized by these interactions and by a network of 30 bound Ca2+ ions and 18 disulfide bonds. The structure suggests how genetic alterations of THBSs result in disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of human THBS2.
Figure 2: Ca2+ coordination in the stalk and wire elements of THBS2.
Figure 3: Disease-associated mutations or polymorphisms of THBSs mapped onto the signature domain of human THBS2.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Adams, J.C. & Lawler, J. The thrombospondins. Int. J. Biochem. Cell Biol. 36, 961–968 (2004).

    Article  CAS  Google Scholar 

  2. Christopherson, K.S. et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120, 421–433 (2005).

    Article  CAS  Google Scholar 

  3. Kyriakides, T.R. et al. Megakaryocytes require thrombospondin-2 for normal platelet formation and function. Blood 101, 3915–3923 (2003).

    Article  CAS  Google Scholar 

  4. Kyriakides, T.R., Zhu, Y.H., Yang, Z.T., Huynh, G. & Bornstein, P. Altered extracellular matrix remodeling and angiogenesis in sponge granulomas of thrombospondin 2-null mice. Am. J. Pathol. 159, 1255–1262 (2001).

    Article  CAS  Google Scholar 

  5. Adams, J.C. et al. Characterisation of Drosophila thrombospondin defines an early origin of pentameric thrombospondins. J. Mol. Biol. 328, 479–494 (2003).

    Article  CAS  Google Scholar 

  6. LaBell, T.L. & Byers, P.H. Sequence and characterization of the complete human thrombospondin 2 cDNA: potential regulatory role for the 3′ untranslated region. Genomics 17, 225–229 (1993).

    Article  CAS  Google Scholar 

  7. Topol, E.J. et al. Single nucleotide polymorphisms in multiple novel thrombospondin genes may be associated with familial premature myocardial infarction. Circulation 104, 2641–2644 (2001).

    Article  CAS  Google Scholar 

  8. Kennedy, J. et al. Novel and recurrent mutations in the C-terminal domain of COMP cluster in two distinct regions and result in a spectrum of phenotypes within the pseudoachondroplasia–multiple epiphyseal dysplasia disease group. Hum. Mutat. 25, 593–594 (2005).

    Article  Google Scholar 

  9. Posey, K.L., Hayes, E., Haynes, R. & Hecht, J.T. Role of TSP-5/COMP in pseudoachondroplasia. Int. J. Biochem. Cell Biol. 36, 1005–1012 (2004).

    Article  CAS  Google Scholar 

  10. Kvansakul, M., Adams, J.C. & Hohenester, E. Structure of a thrombospondin C-terminal fragment reveals a novel calcium core in the type 3 repeats. EMBO J. 23, 1223–1233 (2004).

    Article  CAS  Google Scholar 

  11. Wouters, M.A. et al. Evolution of distinct EGF domains with specific functions. Protein Sci. 14, 1091–1103 (2005).

    Article  CAS  Google Scholar 

  12. Boswell, E.J., Kurniawan, N.D. & Downing, A.K. Calcium-binding EGF-like domains. in Handbook of Metalloproteins Vol. 3 (eds. Messerschmidt, A., Bode, W. & Cygler, M.) 553–570 (Wiley, Chichester, UK, 2004).

    Google Scholar 

  13. Misenheimer, T.M., Hannah, B.L., Annis, D.S. & Mosher, D.F. Interactions among the three structural motifs of the C-terminal region of human thrombospondin-2. Biochemistry 42, 5125–5132 (2003).

    Article  CAS  Google Scholar 

  14. Misenheimer, T.M., Hahr, A.J., Harms, A.C., Annis, D.S. & Mosher, D.F. Disulfide connectivity of recombinant C-terminal region of human thrombospondin 2. J. Biol. Chem. 276, 45882–45887 (2001).

    Article  CAS  Google Scholar 

  15. Lawler, J., Chao, F.C. & Cohen, C.M. Evidence for calcium-sensitive structure in platelet thrombospondin: Isolation and partial characterization of thrombospondin in the presence of calcium. J. Biol. Chem. 257, 12257–12265 (1982).

    CAS  PubMed  Google Scholar 

  16. Lawler, J., Derick, L.H., Connolly, J.E., Chen, J.-H. & Chao, F.C. The structure of human platelet thrombospondin. J. Biol. Chem. 260, 3762–3772 (1985).

    CAS  PubMed  Google Scholar 

  17. Chen, H., Aeschlimann, D., Nowlen, J. & Mosher, D. Expression and initial characterization of recombinant mouse thrombospondin 1 and thrombospondin 3. FEBS Lett. 387, 36–41 (1996).

    Article  CAS  Google Scholar 

  18. Lawler, J. & Hynes, R.O. An integrin receptor on normal and thrombasthenic platelets that binds thrombospondin. Blood 74, 2022–2027 (1989).

    CAS  PubMed  Google Scholar 

  19. Chen, H., Sottile, J., O'Rourke, K.M., Dixit, V.M. & Mosher, D.F. Properties of recombinant mouse thrombospondin 2 expressed in Spodoptera cells. J. Biol. Chem. 269, 32226–32232 (1994).

    CAS  PubMed  Google Scholar 

  20. Gao, A.G. & Frazier, W.A. Identification of a receptor candidate for the carboxyl-terminal cell binding domain of thrombospondins. J. Biol. Chem. 269, 29650–29657 (1994).

    CAS  PubMed  Google Scholar 

  21. Hannah, B.L., Misenheimer, T.M., Pranghofer, M.M. & Mosher, D.F. A polymorphism in thrombospondin-1 associated with familial premature coronary artery disease alters Ca2+ binding. J. Biol. Chem. 279, 51915–51922 (2004).

    Article  Google Scholar 

  22. Dinser, R. et al. Pseudoachondroplasia is caused through both intra-and extracellular pathogenic pathways. J. Clin. Invest. 110, 505–513 (2002).

    Article  CAS  Google Scholar 

  23. Adams, J.C., Tucker, R.P. & Lawler, J. Mechanistic and functional aspects of the interactions of thrombospondins with cell surfaces. in The Thrombospondin Gene Family 105–157 (R.G. Landes Company, Austin, Texas, USA, 1995).

    Google Scholar 

  24. Mosher, D.F., Huwiler, K.G., Misenheimer, T.M. & Annis, D.S. Expression of recombinant matrix components using baculoviruses. Methods Cell Biol. 69, 69–81 (2002).

    Article  CAS  Google Scholar 

  25. McWhirter, S.M. et al. Crystallographic analysis of CD40 recognition and signaling by human TRAF2. Proc. Natl. Acad. Sci. USA 96, 8408–8413 (1999).

    Article  CAS  Google Scholar 

  26. Bellizzi, J.J., Widom, J., Kemp, C.W. & Clardy, J. Producing selenomethionine-labeled proteins with a baculovirus expression vector system. Struct. Fold. Des. 7, R263–R267 (1999).

    Article  CAS  Google Scholar 

  27. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  28. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D Biol. Crystallogr. 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  29. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

Download references

Acknowledgements

We thank E. Hohenester for communicating results before publication and the Advanced Photon Source beamline staff for assistance in data collection. This work was supported by US National Institutes of Health grant HL54462 to D.F.M. and a Shaw Foundation for Medical Research grant to J.L.K. C.B.C. and D.A.B. were supported by US National Institutes of Health training grants HL07899 and GM08293.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deane F Mosher or James L Keck.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Stereo diagram of the human TSP-2 signature domain structure (PDF 3045 kb)

Supplementary Fig. 2

Sequence and secondary structure of the signature domain of human TSP-2 (PDF 687 kb)

Supplementary Fig. 3

Comparison of the crystal structures of the TSP-2 signature domain and the TSP-1 signature domain fragment (PDF 1918 kb)

Supplementary Table 1

TSP-2 coordination of 30 bound Ca(2+) ions (PDF 890 kb)

Supplementary Table 2

Disease-linked TSP-family mutations (PDF 1189 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlson, C., Bernstein, D., Annis, D. et al. Structure of the calcium-rich signature domain of human thrombospondin-2. Nat Struct Mol Biol 12, 910–914 (2005). https://doi.org/10.1038/nsmb997

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb997

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing