Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Distinct conformational states of nuclear receptor–bound CRSP–Med complexes

Abstract

The human CRSP–Med coactivator complex is targeted by a diverse array of sequence-specific regulatory proteins. Using EM and single-particle reconstruction techniques, we recently completed a structural analysis of CRSP–Med bound to VP16 and SREBP-1a. Notably, these activators induced distinct conformational states upon binding the coactivator. Ostensibly, these different conformational states result from VP16 and SREBP-1a targeting distinct subunits in the CRSP–Med complex. To test this, we conducted a structural analysis of CRSP–Med bound to either thyroid hormone receptor (TR) or vitamin D receptor (VDR), both of which interact with the same subunit (Med220) of CRSP–Med. Structural comparison of TR- and VDR-bound complexes (at a resolution of 29 Å) indeed reveals a shared conformational feature that is distinct from other known CRSP– Med structures. Importantly, this nuclear receptor–induced structural shift seems largely dependent on the movement of Med220 within the complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TR and VDR bind two distinct mediator complexes: CRSP–Med and ARC-L–Med.
Figure 2: Subunit composition and transcriptional activity of TR- and VDR-CRSP–Med.
Figure 3: EM analysis of NR-bound CRSP–Med complexes.
Figure 4: NR-CRSP–Med structures have a shared conformational handedness that is different from other known CRSP–Med conformations.
Figure 5: Conformational change involves Med220.

Similar content being viewed by others

References

  1. Mangelsdorf, D.J. et al. The nuclear receptor superfamily: the second decade. Cell 83, 835–839 (1995).

    Article  CAS  Google Scholar 

  2. Glass, C.K. & Rosenfeld, M.G. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 14, 121–141 (2000).

    CAS  Google Scholar 

  3. Darimont, B.D. et al. Structure and specificity of nuclear receptor-coactivator interactions. Genes Dev. 12, 3343–3356 (1998).

    Article  CAS  Google Scholar 

  4. Näär, A.M., Lemon, B.D. & Tjian, R. Transcriptional coactivator complexes. Annu. Rev. Biochem. 70, 475–501 (2001).

    Article  Google Scholar 

  5. Rachez, C. & Freedman, L.P. Mediator complexes and transcription. Curr. Opin. Cell Biol. 13, 274–280 (2001).

    Article  CAS  Google Scholar 

  6. Boyer, T.G., Martin, M.E.D., Lees, E., Riccardi, R.P. & Berk, A.J. Mammalian Srb/Mediator complex is targeted by adenovirus E1a protein. Nature 399, 276–279 (1999).

    Article  CAS  Google Scholar 

  7. Fondell, J.D., Ge, H. & Roeder, R.G. Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex. Proc. Natl. Acad. Sci. USA 93, 8329–8333 (1996).

    Article  CAS  Google Scholar 

  8. Gu, W. et al. A novel human SRB/MED-containing cofactor complex, SMCC, involved in transcription regulation. Mol. Cell 3, 97–108 (1999).

    Article  CAS  Google Scholar 

  9. Malik, S., Gu, W., Wu, W., Qin, J. & Roeder, R.G. The USA-derived transcriptional coactivator PC2 is a submodule of TRAP/SMCC and acts synergistically with other PCs. Mol. Cell 5, 753–760 (2000).

    Article  CAS  Google Scholar 

  10. Näär, A.M. et al. Composite co-activator ARC mediates chromatin-directed transcriptional activation. Nature 398, 828–832 (1999).

    Article  Google Scholar 

  11. Rachez, C. et al. Ligand-dependent transcription activation by nuclear receptors requires the DRIP complex. Nature 398, 824–828 (1999).

    Article  CAS  Google Scholar 

  12. Ryu, S., Zhou, S., Ladurner, A.G. & Tjian, R. The transcriptional cofactor complex CRSP is required for activity of the enhancer-binding protein Sp1. Nature 397, 446–450 (1999).

    Article  CAS  Google Scholar 

  13. Sun, X. et al. NAT, a human complex containing Srb polypeptides that functions as a negative regulator of activated transcription. Mol. Cell 2, 213–222 (1998).

    Article  CAS  Google Scholar 

  14. Myers, L.C. & Kornberg, R.D. Mediator of transcriptional regulation. Annu. Rev. Biochem. 69, 729–749 (2000).

    Article  CAS  Google Scholar 

  15. Boube, M., Joulia, L., Cribbs, D.L. & Bourbon, H. Evidence for a mediator of RNA polymerase II transcriptional regulation conserved from yeast to man. Cell 110, 143–151 (2002).

    Article  CAS  Google Scholar 

  16. Levine, M. & Tjian, R. Transcription regulation and animal diversity. Nature 424, 147–151 (2003).

    Article  CAS  Google Scholar 

  17. Taatjes, D.J., Näär, A.M., Andel, F., Nogales, E. & Tjian, R. Structure, function, and activator-induced conformations of the CRSP coactivator. Science 295, 1058–1062 (2002).

    Article  CAS  Google Scholar 

  18. Ito, M. et al. Identity between TRAP and SMCC complexes indicates novel pathways for the function of nuclear receptors and diverse mammalian activators. Mol. Cell 3, 361–370 (1999).

    Article  CAS  Google Scholar 

  19. Yang, F., DeBeaumont, R., Zhou, S. & Näär, A.M. The activator-recruited cofactor/Mediator coactivator subunit ARC92 is a functionally important target of the VP16 transcriptional activator. Proc. Natl. Acad. Sci. USA 101, 2339–2344 (2004).

    Article  CAS  Google Scholar 

  20. Mittler, G. et al. A novel docking site on Mediator is critical for activation by VP16 in mammalian cells. EMBO J. 22, 6494–6504 (2003).

    Article  CAS  Google Scholar 

  21. Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996).

    Article  CAS  Google Scholar 

  22. Radermacher, M., Wagenknecht, T., Verschoor, A. & Frank, J. Three-dimensional reconstruction from a single-exposure random conical tilt series applied to the 50s ribosomal subunit of Escherichia coli. J. Microsc. 146, 113–136 (1987).

    Article  CAS  Google Scholar 

  23. Harauz, G. & van Heel, M. Exact filters for general geometry three dimensional reconstruction. Optik 73, 146–153 (1986).

    Google Scholar 

  24. Dotson, M.R. et al. Structural organization of yeast and mammalian mediator complexes. Proc. Natl. Acad. Sci. USA 97, 14307–14310 (2000).

    Article  CAS  Google Scholar 

  25. Yuan, C., Ito, M., Fondell, J.D., Fu, Z. & Roeder, R.G. The TRAP220 component of a thyroid hormone receptor-associated protein (TRAP) coactivator complex interacts directly with nuclear receptors in a ligand-dependent fashion. Proc. Natl. Acad. Sci. USA 95, 7939–7944 (1998).

    Article  CAS  Google Scholar 

  26. Näär, A.M., Taatjes, D.J., Zhai, W., Nogales, E. & Tjian, R. Human CRSP interacts with RNA polymerase II CTD and adopts a specific CTD-bound conformation. Genes Dev. 16, 1339–1344 (2002).

    Article  Google Scholar 

  27. Akoulitchev, S., Chuikov, S. & Reinberg, D. TFIIH is negatively regulated by cdk8-containing mediator complexes. Nature 407, 102–106 (2000).

    Article  CAS  Google Scholar 

  28. Holstege, F.C. et al. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717–728 (1998).

    Article  CAS  Google Scholar 

  29. Carlson, M. Genetics of transcriptional regulation in yeast: connections with the RNA polymerase II CTD. Annu. Rev. Cell Dev. Biol. 13, 1–23 (1997).

    Article  CAS  Google Scholar 

  30. Wurtz, J.M. et al. A canonical structure for the ligand-binding domain of nuclear receptors. Nat. Struct. Biol. 3, 87–94 (1996).

    Article  CAS  Google Scholar 

  31. McInerney, E.M. et al. Determinants of coactivator LXXLL motif specificity in nuclear receptor transcriptional activation. Genes Dev. 12, 3357–3368 (1998).

    Article  CAS  Google Scholar 

  32. Warnmark, A., Almlof, T., Leers, J., Gustafsson, J.A. & Treuter, E. Differential recruitment of the mammalian mediator subunit TRAP220 by estrogen receptors ERα and ERβ. J Biol. Chem. 276, 23397–23404 (2001).

    Article  CAS  Google Scholar 

  33. Rochel, N., Wurtz, J.M., Mitschler, A., Klaholz, B. & Moras, D. The crystal structure of the nuclear receptor for vitamin D bound to its natural ligand. Mol. Cell 5, 173–179 (2000).

    Article  CAS  Google Scholar 

  34. Coulthard, V.H., Matsuda, S. & Heery, D.M. An extended LXXLL motif sequence determines the nuclear receptor binding specificity of TRAP220. J. Biol. Chem. 278, 10942–10951 (2003).

    Article  CAS  Google Scholar 

  35. Ren, Y. et al. Specific structural motifs determine TRAP220 interactions with nuclear hormone receptors. Mol. Cell. Biol. 20, 5433–5446 (2000).

    Article  CAS  Google Scholar 

  36. Taatjes, D.J. & Tjian, R. Structure and function of CRSP/Med2: a promoter-selective co-activator complex. Mol. Cell 14 (in the press).

  37. Davis, J.A., Takagi, Y., Kornberg, R.D. & Asturias, F.A. Structure of the yeast RNA polymerase II holoenzyme: Mediator conformation and polymerase interaction. Mol. Cell 10, 409–415 (2002).

    Article  CAS  Google Scholar 

  38. Dignam, J.D., Martin, P.L., Shastry, B.S. & Roeder, R.G. Eukaryotic gene transcription with purified components. Methods Enzymol. 101, 582–598 (1983).

    Article  CAS  Google Scholar 

  39. Näär, A.M. et al. Chromatin, TAFs, and a novel multiprotein coactivator are required for synergistic activation by Sp1 and SREBP-1a in vitro. Genes Dev. 12, 3020–3031 (1998).

    Article  Google Scholar 

  40. Frank, J. Classification of macromolecular assemblies studied as 'single particles'. Q. Rev. Biophys. 23, 281–329 (1990).

    Article  CAS  Google Scholar 

  41. Penczek, P.A., Grassucci, R.A. & Frank, J. The ribosome at improved resolution: new techniques for merging and orientation refinement in 3D cryo-EM of biological particles. Ultramicroscopy 53, 251–270 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Nogales for the use of her electron microscope and for helpful comments on the manuscript. We also thank C. Inouye for providing purified GTFs used for the in vitro transcription system. This work was funded by grants from the US National Institutes of Health and the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Tjian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Purification scheme. (PDF 15 kb)

Supplementary Fig. 2

Angular distribution. (PDF 207 kb)

Supplementary Fig. 3

TR-ARC-L-Med structure. (PDF 59 kb)

Supplementary Fig. 4

TR and VDR alignment. (PDF 43 kb)

Supplementary Table 1

Correlation coefficients. (PDF 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taatjes, D., Schneider-Poetsch, T. & Tjian, R. Distinct conformational states of nuclear receptor–bound CRSP–Med complexes. Nat Struct Mol Biol 11, 664–671 (2004). https://doi.org/10.1038/nsmb789

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb789

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing