Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural analysis of cooperative RNA binding by the La motif and central RRM domain of human La protein

Abstract

The La protein is a conserved component of eukaryotic ribonucleoprotein complexes that binds the 3′ poly(U)-rich elements of nascent RNA polymerase III (pol III) transcripts to assist folding and maturation. This specific recognition is mediated by the N-terminal domain (NTD) of La, which comprises a La motif and an RNA recognition motif (RRM). We have determined the solution structures of both domains and show that the La motif adopts an α/β fold that comprises a winged-helix motif elaborated by the insertion of three helices. Chemical shift mapping experiments show that these insertions are involved in RNA interactions. They further delineate a distinct surface patch on each domain—containing both basic and aromatic residues—that interacts with RNA and accounts for the cooperative binding of short oligonucleotides exhibited by the La NTD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain organization of human La and deletion mutants used in this study.
Figure 2: Structural analysis of the La motif and the adjacent RRM.
Figure 3: Analysis of La-oligo(U) interaction.
Figure 4: Alignment of the La motif and central RRM sequences for La homologs.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Wolin, S.L. & Cedervall, T. The La protein. Annu. Rev. Biochem. 71, 375–403 (2002).

    Article  CAS  Google Scholar 

  2. Maraia, R.J. & Intine, R.V. Recognition of nascent RNA by the human La antigen: conserved and divergent features of structure and function. Mol. Cell. Biol. 21, 367–379 (2001).

    Article  CAS  Google Scholar 

  3. Fan, H., Goodier, J.L., Chamberlain, J.R., Engelke, D.R. & Maraia, R.J. 5′ processing of tRNA precursors can be modulated by the human La antigen phosphoprotein. Mol. Cell. Biol. 18, 3201–3211 (1998).

    Article  CAS  Google Scholar 

  4. Yoo, C.J. & Wolin, S.L. The yeast La protein is required for the 3′ endonucleolytic cleavage that matures tRNA precursors. Cell 89, 393–402 (1997).

    Article  CAS  Google Scholar 

  5. Chakshusmathi, G., Kim, S.D., Rubinson, D.A. & Wolin, S.L. A La protein requirement for efficient pre-tRNA folding. EMBO J. 22, 6562–6572 (2003).

    Article  CAS  Google Scholar 

  6. Simons, F.H., Broers, F.J., Van Venrooij, W.J. & Pruijn, G.J. Characterization of cis-acting signals for nuclear import and retention of the La (SS-B) autoantigen. Exp. Cell. Res. 224, 224–236 (1996).

    Article  CAS  Google Scholar 

  7. Intine, R.V., Dundr, M., Misteli, T. & Maraia, R.J. Aberrant nuclear trafficking of La protein leads to disordered processing of associated precursor tRNAs. Mol. Cell 9, 1113–1123 (2002).

    Article  CAS  Google Scholar 

  8. Raats, J.M. et al. Human recombinant anti-La (SS-B) autoantibodies demonstrate the accumulation of phosphoserine-366-containing la isoforms in nucleoplasmic speckles. Eur. J. Cell. Biol. 82, 131–141 (2003).

    Article  CAS  Google Scholar 

  9. Pannone, B.K., Kim, S.D., Noe, D.A. & Wolin, S.L. Multiple functional interactions between components of the Lsm2–Lsm8 complex, U6 snRNA, and the yeast La protein. Genetics 158, 187–196 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Fouraux, M.A. et al. The human La (SS-B) autoantigen interacts with DDX15/hPrp43, a putative DEAH-box RNA helicase. RNA 8, 1428–1443 (2002).

    Article  CAS  Google Scholar 

  11. Ali, N., Pruijn, G.J., Kenan, D.J., Keene, J.D. & Siddiqui, A. Human La antigen is required for the hepatitis C virus internal ribosome entry site-mediated translation. J. Biol. Chem. 275, 27531–27540 (2000).

    CAS  PubMed  Google Scholar 

  12. Holcik, M. & Korneluk, R.G. Functional characterization of the X-linked inhibitor of apoptosis (XIAP) internal ribosome entry site element: role of La autoantigen in XIAP translation. Mol. Cell. Biol. 20, 4648–4657 (2000).

    Article  CAS  Google Scholar 

  13. Pudi, R., Abhiman, S., Srinivasan, N. & Das, S. Hepatitis C virus internal ribosome entry site-mediated translation is stimulated by specific interaction of independent regions of human La autoantigen. J. Biol. Chem. 278, 12231–12240 (2003).

    Article  CAS  Google Scholar 

  14. Ohndorf, U.M., Steegborn, C., Knijff, R. & Sondermann, P. Contributions of the individual domains in human La protein to its RNA 3′-end binding activity. J. Biol. Chem. 276, 27188–27196 (2001).

    Article  CAS  Google Scholar 

  15. Chang, Y.N., Kenan, D.J., Keene, J.D., Gatignol, A. & Jeang, K.T. Direct interactions between autoantigen La and human immunodeficiency virus leader RNA. J. Virol. 68, 7008–7020 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kenan, D.J. RNA Recognition by the Human La Protein and Its Relevance to Transcription, Translation and Viral Infectivity. Thesis, Duke University (1995).

    Google Scholar 

  17. Goodier, J.L., Fan, H. & Maraia, R.J. A carboxy-terminal basic region controls RNA polymerase III transcription factor activity of human La protein. Mol. Cell. Biol. 17, 5823–5832 (1997).

    Article  CAS  Google Scholar 

  18. Jacks, A. et al. Structure of the C-terminal domain of human La protein reveals a novel RNA recognition motif coupled to a helical nuclear retention element. Structure 11, 833–843 (2003).

    Article  CAS  Google Scholar 

  19. Intine, R.V., Tenenbaum, S.A., Sakulich, A.L., Keene, J.D. & Maraia, R.J. Differential phosphorylation and subcellular localization of La RNPs associated with precursor tRNAs and translation-related mRNAs. Mol. Cell 12, 1301–1307 (2003).

    Article  CAS  Google Scholar 

  20. Horke, S., Reumann, K., Rang, A. & Heise, T. Molecular characterization of the human La protein.hepatitis B virus RNA.B interaction in vitro. J. Biol. Chem. 277, 34949–34958 (2002).

    Article  CAS  Google Scholar 

  21. Intine, R.V. et al. Control of transfer RNA maturation by phosphorylation of the human La antigen on serine 366. Mol. Cell 6, 339–348 (2000).

    Article  CAS  Google Scholar 

  22. Crosio, C., Boyl, P.P., Loreni, F., Pierandrei-Amaldi, P. & Amaldi, F. La protein has a positive effect on the translation of TOP mRNAs in vivo. Nucleic Acids Res. 28, 2927–2934 (2000).

    Article  CAS  Google Scholar 

  23. Sanfelice, D., Babon, J., Kelly, G., Curry, S. & Conte, M.R. Resonance assignment and secondary structure of the La motif. J. Biomol. NMR (in the press).

  24. Gajiwala, K.S. & Burley, S.K. Winged helix proteins. Curr. Opin. Struct. Biol. 10, 110–116 (2000).

    Article  CAS  Google Scholar 

  25. Schwartz, T., Rould, M.A., Lowenhaupt, K., Herbert, A. & Rich, A. Crystal structure of the Z α domain of the human editing enzyme ADAR1 bound to left-handed Z-DNA. Science 284, 1841–1845 (1999).

    Article  CAS  Google Scholar 

  26. Okuda, M. et al. Structure of the central core domain of TFIIEβ with a novel double-stranded DNA-binding surface. EMBO J. 19, 1346–1356 (2000).

    Article  CAS  Google Scholar 

  27. Clark, K.L., Halay, E.D., Lai, E. & Burley, S.K. Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature 364, 412–420 (1993).

    Article  CAS  Google Scholar 

  28. Gajiwala, K.S. et al. Structure of the winged-helix protein hRFX1 reveals a new mode of DNA binding. Nature 403, 916–921 (2000).

    Article  CAS  Google Scholar 

  29. Alfano, C., Babon, J., Kelly, G., Curry, S. & Conte, M.R. Resonance assignment and secondary structure of an N-terminal fragment of the human La protein. J. Biomol. NMR 27, 93–94 (2003).

    Article  CAS  Google Scholar 

  30. Shamoo, Y., Krueger, U., Rice, L.M., Williams, K.R. & Steitz, T.A. Crystal structure of the two RNA binding domains of human hnRNP A1 at 1.75 Å resolution. Nat. Struct. Biol. 4, 215–222 (1997).

    Article  CAS  Google Scholar 

  31. Xu, R.M., Jokhan, L., Cheng, X., Mayeda, A. & Krainer, A.R. Crystal structure of human UP1, the domain of hnRNP A1 that contains two RNA-recognition motifs. Structure 5, 559–570 (1997).

    Article  CAS  Google Scholar 

  32. Oubridge, C., Ito, N., Evans, P.R., Teo, C.H. & Nagai, K. Crystal structure at 1.92 Å resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature 372, 432–438 (1994).

    Article  CAS  Google Scholar 

  33. Perez Cañadillas, J.M. & Varani, G. Recognition of GU-rich polyadenylation regulatory elements by human CstF-64 protein. EMBO J. 22, 2821–2830 (2003).

    Article  Google Scholar 

  34. Handa, N. et al. Structural basis for recognition of the tra mRNA precursor by the sex-lethal protein. Nature 398, 579–585 (1999).

    Article  CAS  Google Scholar 

  35. Nagata, T. et al. Structure and interactions with RNA of the N-terminal UUAG-specific RNA-binding domain of hnRNP D0. J. Mol. Biol. 287, 221–237 (1999).

    Article  CAS  Google Scholar 

  36. Pruijn, G.J., Slobbe, R.L. & van Venrooij, W.J. Analysis of protein-RNA interactions within Ro ribonucleoprotein complexes. Nucleic Acids Res. 19, 5173–5180 (1991).

    Article  CAS  Google Scholar 

  37. Foster, M.P. et al. Chemical shift as a probe of molecular interfaces: NMR studies of DNA binding by the three amino-terminal zinc finger domains from transcription factor IIIA. J. Biomol. NMR. 12, 51–71 (1998).

    Article  CAS  Google Scholar 

  38. Deo, R.C., Bonanno, J.B., Sonenberg, N. & Burley, S.K. Recognition of polyadenylate RNA by the poly(A)-binding protein. Cell 98, 835–845 (1999).

    Article  CAS  Google Scholar 

  39. Chambers, J.C. & Keene, J.D. Isolation and analysis of cDNA clones expressing human lupus La antigen. Proc. Natl. Acad. Sci. USA 82, 2115–2119 (1985).

    Article  CAS  Google Scholar 

  40. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  41. Bartels, C., Xia, T., Billeter, M., Güntert, P. & Wüthrich, K. The program XEASY for computer supported NMR spectral-analysis of biological macromolecules. J. Biomol. NMR 6, 1–10 (1995).

    Article  CAS  Google Scholar 

  42. Fesik, S.W. & Zuiderweg, E.R.P. Heteronuclear 3-dimensional NMR spectroscopy. A strategy for the simplification of homo-nuclear two-dimensional NMR spectra. J. Magn. Res. 78, 588–593 (1988).

    Google Scholar 

  43. Kay, L.E., Torchia, D.A. & Bax, A. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry 28, 8972–8979 (1989).

    Article  CAS  Google Scholar 

  44. Rückert, M. & Otting, G. Alignment of biological macromolecules in novel non-ionic liquid crystalline media for NMR experiments. J. Am. Chem. Soc. 122, 7793–7797 (2000).

    Article  Google Scholar 

  45. Tjandra, N., Grzesiek, S. & Bax, A. Magnetic field dependence of nitrogen-proton J splitting in 15N-enriched human ubiquitin resulting from relaxation interference and residual dipolar coupling. J. Am. Chem. Soc. 118, 6264–6272 (1996).

    Article  CAS  Google Scholar 

  46. Brunger, A.T. X-PLOR: a System for X-ray crystallography and NMR (Yale Univ. Press, New Haven, 1992).

    Google Scholar 

  47. Clore, G.M., Gronenborn, A.M. & Tjandra, N. Direct structure refinement against residual dipolar couplings in the presence of rhombicity of unknown magnitude. J. Magn. Reson. 131, 159–162 (1998).

    Article  CAS  Google Scholar 

  48. Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302 (1999).

    Article  CAS  Google Scholar 

  49. Warren, J.J. & Moore, P.B. A maximum likelihood method for determining D-a(PQ) and R for sets of dipolar coupling data. J. Magn. Reson. 149, 271–275 (2001).

    Article  CAS  Google Scholar 

  50. Koradi, R., Billeter, M. & Wüthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55, 29–32 (1996).

    Article  CAS  Google Scholar 

  51. Laskowski, R.A., Rullman, J.A., MacArthur, M.W., Kaptein, R. & Thornton, J.M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996).

    Article  CAS  Google Scholar 

  52. Merritt, E.A. & Bacon, D.J. Raster3D: Photorealistic molecular graphics. Meth. Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to D. Kenan, J. Keene, N. Sonenberg and R. Maraia for the gift of plasmids containing constructs of human La. We thank S. Wolin and K. Reinisch for communicating results before publication. We are indebted to The Wellcome Trust for financial support. C.A. and D.S. are Institute of Biomedical and Biomolecular Sciences research students. A list of NMR assignments and restraints is available from M.R.C. (sasi.conte@port.ac.uk).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria R Conte.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alfano, C., Sanfelice, D., Babon, J. et al. Structural analysis of cooperative RNA binding by the La motif and central RRM domain of human La protein. Nat Struct Mol Biol 11, 323–329 (2004). https://doi.org/10.1038/nsmb747

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb747

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing