Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis of sugar-recognizing ubiquitin ligase

Abstract

SCFFbs1 is a ubiquitin ligase that functions in the endoplasmic reticulum (ER)-associated degradation pathway. Fbs1/Fbx2, a member of the F-box proteins, recognizes high-mannose oligosaccharides. Efficient binding to an N-glycan requires di-N-acetylchitobiose (chitobiose). Here we report the crystal structures of the sugar-binding domain (SBD) of Fbs1 alone and in complex with chitobiose. The SBD is composed of a ten-stranded antiparallel β-sandwich. The structure of the SBD–chitobiose complex includes hydrogen bonds between Fbs1 and chitobiose and insertion of the methyl group of chitobiose into a small hydrophobic pocket of Fbs1. Moreover, NMR spectroscopy has demonstrated that the amino acid residues adjoining the chitobiose-binding site interact with the outer branches of the carbohydrate moiety. Considering that the innermost chitobiose moieties in N-glycans are usually involved in intramolecular interactions with the polypeptide moieties, we propose that Fbs1 interacts with the chitobiose in unfolded N-glycoprotein, pointing the protein moiety toward E2 for ubiquitination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tertiary structure of SBD in Fbs1.
Figure 2: Structure of SBD in complex with chitobiose.
Figure 3: Residues required for interaction of Fbs1 and glycoproteins with high-mannose oligosaccharides.
Figure 4: Identification of the carbohydrate-binding sites of Fbs1 by NMR spectroscopy.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Hershko, A., Ciechanover, A. & Varshavsky, A. Basic Medical Research Award. The ubiquitin system. Nat. Med. 6, 1073–1081 (2000).

    Article  CAS  Google Scholar 

  2. Pickart, C.M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533 (2001).

    Article  CAS  Google Scholar 

  3. Weissman, A.M. Themes and variations on ubiquitylation. Nat. Rev. Mol. Cell. Biol. 2, 169–178 (2001).

    Article  CAS  Google Scholar 

  4. Deshaies, R.J. SCF and Cullin/Ring H2–based ubiquitin ligases. Annu. Rev. Cell. Dev. Biol. 15, 435–467 (1999).

    Article  CAS  Google Scholar 

  5. Winston, J.T., Koepp, D.M., Zhu, C., Elledge, S.J. & Harper, J.W. A family of mammalian F-box proteins. Curr. Biol. 9, 1180–1182 (1999).

    Article  CAS  Google Scholar 

  6. Ilyin, G.P. et al. A new subfamily of structurally related human F-box proteins. Gene 296, 11–20 (2002).

    Article  CAS  Google Scholar 

  7. Yoshida, Y. et al. E3 ubiquitin ligase that recognizes sugar chains. Nature 418, 438–442 (2002).

    Article  CAS  Google Scholar 

  8. Yoshida, Y. et al. Fbs2 is a new member of the E3 ubiquitin ligase family that recognizes sugar chains. J. Biol. Chem. 278, 43877–43884 (2003).

    Article  CAS  Google Scholar 

  9. Zheng, N. et al. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature 416, 703–709 (2002).

    Article  CAS  Google Scholar 

  10. Wu, G. et al. Structure of a β-TrCP1-Skp1–β-catenin complex: destruction motif binding and lysine specificity of the SCF(β-TrCP1) ubiquitin ligase. Mol. Cell 11, 1445–1456 (2003).

    Article  CAS  Google Scholar 

  11. Orlicky, S., Tang, X., Willems, A., Tyers, M. & Sicheri, F. Structural basis for phosphodependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase. Cell 112, 243–256 (2003).

    Article  CAS  Google Scholar 

  12. Schulman, B.A. et al. Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex. Nature 408, 381–386 (2000).

    Article  CAS  Google Scholar 

  13. Plemper, R.K. & Wolf, D.H. Retrograde protein translocation: ERADication of secretory proteins in health and disease. Trends Biochem. Sci. 24, 266–270 (1999).

    Article  CAS  Google Scholar 

  14. Fiedler, K. & Simons, K. The role of N-glycans in the secretory pathway. Cell 81, 309–312 (1995).

    Article  CAS  Google Scholar 

  15. Helenius, A. & Aebi, M. Intracellular functions of N-linked glycans. Science 291, 2364–2369 (2001).

    Article  CAS  Google Scholar 

  16. Ellgaard, L., Molinari, M. & Helenius, A. Setting the standards: quality control in the secretory pathway. Science 286, 1882–1888 (1999).

    Article  CAS  Google Scholar 

  17. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  18. Seetharaman, J. et al. X-ray crystal structure of the human galectin-3 carbohydrate recognition domain at 2.1-Å resolution. J. Biol. Chem. 273, 13047–13052 (1998).

    Article  CAS  Google Scholar 

  19. Simpson, P.J. et al. The solution structure of the CBM4-2 carbohydrate binding module from a thermostable Rhodothermus marinus xylanase. Biochemistry 41, 5712–5719 (2002).

    Article  CAS  Google Scholar 

  20. Petrescu, A.J., Petrescu, S.M., Dwek, R.A. & Wormald, M.R. A statistical analysis of N- and O-glycan linkage conformations from crystallographic data. Glycobiology 9, 343–352 (1999).

    Article  CAS  Google Scholar 

  21. Vyas, N.K. Atomic features of protein–carbohydrate interactions. Curr. Opin. Struct. Biol. 1, 732–740 (1991).

    Article  CAS  Google Scholar 

  22. Quiocho, F.A. Carbohydrate-binding proteins: tertiary structures and protein–sugar interactions. Annu. Rev. Biochem. 55, 287–315 (1986).

    Article  CAS  Google Scholar 

  23. Williams, R.L., Greene, S.M. & McPherson, A. The crystal structure of ribonuclease B at 2.5-Å resolution. J. Biol. Chem. 262, 16020–16031 (1987).

    CAS  PubMed  Google Scholar 

  24. Leslie, A.G.W. Molecular data processing. Crystallographic Computing 5, 50–61 (1991).

    CAS  Google Scholar 

  25. Kabsch, W. Evaluation of single-crystal X-ray diffraction data from a position-sensitive detector. J. Appl. Crystallogr. 21, 916–924 (1988).

    Article  CAS  Google Scholar 

  26. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  27. Wang, B.C. Resolution of phase ambiguity in macromolecular crystallography. Methods Enzymol. 115, 90–112 (1985).

    Article  CAS  Google Scholar 

  28. Zhang, K.Y.J. & Main, P. The use of Sayre's equation with solvent flattening and histogram matching for phase extension and refinement of protein structures. Acta Crystallogr. A 46, 377–381 (1990).

    Article  Google Scholar 

  29. Perrakis, A., Morris, R. & Lamzin, V.S. Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol. 6, 458–463 (1999).

    Article  CAS  Google Scholar 

  30. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47 (Part 2), 110–119 (1991).

    Article  Google Scholar 

  31. Murshudov, B.W. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  32. Navaza, J. An automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  33. Kawakami, T. et al. NEDD8 recruits E2-ubiquitin to SCF E3 ligase. Embo J. 20, 4003–4012 (2001).

    Article  CAS  Google Scholar 

  34. Clore, G.M. & Gronenborn, A.M. Multidimensional heteronuclear nuclear magnetic resonance of proteins. Methods Enzymol. 239, 349–363 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Wada for her help in the preparation of isotopically labeled recombinant proteins and E. Adachi for expert technical assistance. This work was supported in part by Grants-in-Aid from the Ministry of Education, Science and Culture of Japan (K.T. and K.K.), Japan Society for the Promotion of Science and Mizutani Foundation for Glycoscience (K.K.), and in part by the National Project on Protein Structural and Functional Analyses from the Ministry of Education, Culture, Sport, Science and Technology of Japan (T.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiji Tanaka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizushima, T., Hirao, T., Yoshida, Y. et al. Structural basis of sugar-recognizing ubiquitin ligase. Nat Struct Mol Biol 11, 365–370 (2004). https://doi.org/10.1038/nsmb732

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb732

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing