Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis of membrane binding by Gla domains of vitamin K–dependent proteins

Abstract

In a calcium-dependent interaction critical for blood coagulation, vitamin K–dependent blood coagulation proteins bind cell membranes containing phosphatidylserine via γ-carboxyglutamic acid–rich (Gla) domains. Gla domain–mediated protein-membrane interaction is required for generation of thrombin, the terminal enzyme in the coagulation cascade, on a physiologic time scale. We determined by X-ray crystallography and NMR spectroscopy the lysophosphatidylserine-binding site in the bovine prothrombin Gla domain. The serine head group binds Gla domain–bound calcium ions and Gla residues 17 and 21, fixed elements of the Gla domain fold, predicting the structural basis for phosphatidylserine specificity among Gla domains. Gla domains provide a unique mechanism for protein-phospholipid membrane interaction. Increasingly Gla domains are being identified in proteins unrelated to blood coagulation. Thus, this membrane-binding mechanism may be important in other physiologic processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the PT1–Ca2+– lysophosphatidylserine complex.
Figure 2: Bonding network for binding of lysophosphatidylserine with Ca2+-liganded PT1.
Figure 3: Comparison of the solution and crystal structures of prothrombin Gla domains.
Figure 4: Model of PT1 interacting with a phospholipid bilayer.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Furie, B. & Furie, B.C. The molecular basis of blood coagulation. Cell 53, 505–518 (1988).

    Article  CAS  Google Scholar 

  2. Kalafatis, M., Egan, J., Veer, C.V.T., Cawthern, K. & Mann, K.G. The regulation of clotting factors. Crit. Rev. Eukaryot. Gene Expr. 7, 241–280 (1997).

    Article  CAS  Google Scholar 

  3. Zwaal, R.F., Comfurius, P. & Bevers, E.M. Lipid-protein interactions in blood coagulation. Biochim. Biophys. Acta 1376, 433–453 (1998).

    Article  CAS  Google Scholar 

  4. Stenflo, J. Contributions of Gla and EFG-like domains to the function of vitamin K-dependent coagulation factors. Crit. Rev. Eukaryot. Gene Expr. 9, 59–88 (1999).

    Article  CAS  Google Scholar 

  5. Nelsestuen, G.L., Shah, A.M. & Harvey, S.B. Vitamin K-dependent proteins. Vitam. Horm. 58, 355–389 (2000).

    Article  CAS  Google Scholar 

  6. Rosing, J., Tans, G., Govers-Riemslag, J.W.P., Zwaal, R.F. & Hemker, H.C. The role of phospholipids and factor Va in the prothrombinase complex. J. Biol. Chem. 255, 274–283 (1980).

    CAS  PubMed  Google Scholar 

  7. Soriano-Garcia, M., Padmanabhan, K., de Vos, A.M. & Tulinsky, A. The Ca2+ ion and membrane binding structure of the Gla domain of Ca-prothrombin fragment 1. Biochemistry 31, 2554–2566 (1992).

    Article  CAS  Google Scholar 

  8. Freedman, S.J., Furie, B.C., Furie, B. & Baleja, J.D. Structure of the calcium ion-bound γ-carboxyglutamic acid-rich domain of Factor IX. Biochemistry 34, 12126–12137 (1995).

    Article  CAS  Google Scholar 

  9. Sunnerhagen, M. et al. Structure of the Ca2+-free Gla domain sheds light on membrane binding of blood coagulation proteins. Nat. Struct. Biol. 2, 504–509 (1995).

    Article  CAS  Google Scholar 

  10. Banner, D.W. et al. The crystal structure of the complex of blood coagulation factor VIIa with soluble tissue factor. Nature 380, 41–46 (1996).

    Article  CAS  Google Scholar 

  11. Li, L. et al. Refinement of the NMR solution structure of the γ-carboxyglutamic acid domain of coagulation Factor IX using molecular dynamics simulation with initial Ca2+ positions determined by a genetic algorithm. Biochemistry 36, 2132–2138 (1997).

    Article  CAS  Google Scholar 

  12. Mizuno, H., Fujimoto, Z., Atoda, H. & Morita, T. Crystal structure of an anticoagulant protein in complex with the Gla domain of factor X. Proc. Natl. Acad. Sci. USA 98, 7230–7234 (2001).

    Article  CAS  Google Scholar 

  13. Park, C.H. & Tulinsky, A. Three-dimensional structure of the kringle sequence: structure of prothrombin fragment 1. Biochemistry 25, 3977–3982 (1986).

    Article  CAS  Google Scholar 

  14. Freedman, S.J., Furie, B.C., Furie, B. & Baleja, J.D. Structure of the metal-free γ-carboxyglutamic acid-rich membrane binding region of Factor IX by 2D NMR spectroscopy. J. Biol. Chem. 270, 7980–7987 (1995).

    Article  CAS  Google Scholar 

  15. Zhang, L. & Castellino, F.J. The binding energy of human coagulation Protein C to acidic phospholipid vesicles contains a major contribution from leucine 5 in the γ-carboxyglutamic acid domain. J. Biol. Chem. 269, 3590–3595 (1994).

    CAS  PubMed  Google Scholar 

  16. Christiansen, W.T. et al. Hydrophobic amino acid residues of human anticoagulation protein C that contribute to its functional binding to phospholipid vesicles. Biochemistry 34, 10376–10382 (1995).

    Article  CAS  Google Scholar 

  17. Freedman, S.J. et al. Identification of the phospholipid binding site in the vitamin K-dependent blood coagulation protein Factor IX. J. Biol. Chem. 271, 16227–16236 (1996).

    Article  CAS  Google Scholar 

  18. Falls, L.A., Furie, B.C., Jacobs, M., Furie, B. & Rigby, A.C. The ω-loop region of the human prothrombin γ-carboxyglutamic acid domain penetrates anionic phospholipid membranes. J. Biol. Chem. 276, 23895–23902 (2001).

    Article  CAS  Google Scholar 

  19. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  20. Yamazaki, T., Pascol, S.M., Singer, A.V., Forman-Kay, J.D. & Kay, L.E. NMR pulse schemes for the sequence-specific assignment of arginine guanidino 15N and 1H chemical shifts in proteins. J. Amer. Chem. Soc. 117, 3556–3564 (1995).

    Article  CAS  Google Scholar 

  21. Leszczynski, J.F. & Rose, G.D. Loops in globular proteins: a novel category of secondary structure. Science 234, 849–855 (1986).

    Article  CAS  Google Scholar 

  22. Thariath, A. & Castellino, F.J. Highly conserved residue arginine-15 is required for the Ca2+-dependent properties of the γ carboxyglutamic acid domain of human anticoagulation protein C and activated protein C. Biochem. J. 322, 309–315 (1997).

    Article  CAS  Google Scholar 

  23. Lu, Y. & Nelsestuen, G.L. Dynamic features of prothrombin interaction with phospholipid vesicles of different size and composition: implications for protein-membrane contact. Biochemistry 35, 8193–8200 (1996).

    Article  CAS  Google Scholar 

  24. Resnick, R.M. & Nelsestuen, G.L. Prothrombin-membrane interaction. Effects of ionic strength, pH and temperature. Biochemistry 19, 3028–3033 (1980).

    Article  CAS  Google Scholar 

  25. Evans, T.C. & Nelsestuen, G.L. Importance of cis-proline 22 in the membrane-binding conformation of bovine prothrombin. Biochemistry 35, 8210–8215 (1996).

    Article  CAS  Google Scholar 

  26. Perera, L., Darden, T.A. & Pedersen, L.G. Trans-cis isomerization of proline 22 in bovine prothrombin fragment 1: a surprising result of structural characterization. Biochemistry 37, 10920–10927 (1998).

    Article  CAS  Google Scholar 

  27. Sommerville, L.E., Resnick, R.M., Thomas, D.D. & Nelsestuen, G.L. Terbium probe of calcium-binding sites on the prothrombin-membrane complex. J. Biol. Chem. 261, 6222–6229 (1986).

    CAS  PubMed  Google Scholar 

  28. Nelsestuen, G.L. & Lim, T.K. Interaction of prothrombin and blood-clotting factor X with membranes of varying composition. Biochemistry 16, 4172–4179 (1977).

    Article  CAS  Google Scholar 

  29. Evans, T.C. & Nelsestuen, G.L. Calcium and membrane-binding properties of monomeric and multimeric annexin II. Biochemistry 33, 13231–13238 (1994).

    Article  CAS  Google Scholar 

  30. McDonald, J.F. et al. Comparison of naturally occurring vitamin K-dependent proteins: correlations of amino acid sequences and membrane binding properties suggests a membrane contact site. Biochemistry 36, 5120–5127 (1997).

    Article  CAS  Google Scholar 

  31. Swairjo, M.A., Concha, N.O., Kaetzel, M.A., Dedman, J.R. & Seaton, B.A. Ca2+-bridging mechanism and phospholipid head group recognition in the membrane-binding protein annexin V. Nat. Struct. Biol. 2, 968–974 (1995).

    Article  CAS  Google Scholar 

  32. Verdaguer, N., Corbalan-Garcia, S., Ochoa, W.F., Fita, I. & Gomez-Fernandez, J.C. Ca2+ bridges the C2 membrane-binding domain of protein kinase Cα directly to phospatidylserine. EMBO J. 18, 6329–6338 (1999).

    Article  CAS  Google Scholar 

  33. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  34. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  35. Read, R.J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A 42, 140–149 (1986).

    Article  Google Scholar 

  36. Jones, T.A. & Kjeldgaard, M. O—The Manual (Uppsala, Sweden, 1992).

    Google Scholar 

  37. Brunger, A.T., Krukowski, A. & Erickson, J.W. Slow-cooling protocols for crystallographic refinement by simulated annealing. Acta Crystallogr. A 46, 585–593 (1990).

    Article  Google Scholar 

  38. Blostein, M.D., Rigby, A., Jacobs, M., Furie, B.C. & Furie, B. The Gla domain of human prothrombin has a binding site for factor Va. J. Biol. Chem. 275, 38120–38126 (2000).

    Article  CAS  Google Scholar 

  39. Bax, A., Ikura, M., Kay, L., Torchia, D. & Tschudin, R. Comparison of different modes of 2-dimensional reverse-correlation NMR for the study of proteins. J. Magn. Reson. 86, 304–318 (1990).

    CAS  Google Scholar 

  40. Zhang, O., Kay, L.E., Olivier, J.P. & Forman-Kay, J.D. Backbone 1H and 15N resonance assignments of the N-terminal SH3 domains of drk in folded and unfolded states using enhanced-sensitivity pulsed field gradient NMR techniques. J. Biomol. NMR 4, 845–858 (1994).

    Article  CAS  Google Scholar 

  41. Wishart, D.S. et al. 1H, 13C, 15N chemical shift referencing in biomolecular NMR. J. Biomol. NMR 6, 135–140 (1995).

    Article  CAS  Google Scholar 

  42. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  43. Esnouf, R.M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. Model. 15, 132–134 (1997).

    Article  CAS  Google Scholar 

  44. Merrit, E.A. & Murphy, M.E.P. Raster3D Version 2.0, a program for photorealistic molecular graphics. Acta Crystallogr. D 50, 869–873 (1994).

    Article  Google Scholar 

  45. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Brookhaven National Laboratories for time on beamlines X12C, X8C and X25 and J. Wang for assistance with collection of X-ray data. This work was supported by grants from the US National Institutes of Health to B.C.F., B.S., B.F. and M.A.G. and from the American Heart Association to A.C.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara C Furie.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, M., Rigby, A., Morelli, X. et al. Structural basis of membrane binding by Gla domains of vitamin K–dependent proteins. Nat Struct Mol Biol 10, 751–756 (2003). https://doi.org/10.1038/nsb971

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb971

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing