Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The RNA-binding SAM domain of Smaug defines a new family of post-transcriptional regulators

Abstract

Anteroposterior patterning in Drosophila melanogaster is dependent on the sequence-specific RNA-binding protein Smaug, which binds to and regulates the translation of nanos (nos) mRNA. Here we demonstrate that the sterile-α motif (SAM) domain of Smaug functions as an RNA-recognition domain. This represents a new function for the SAM domain family, which is well characterized for mediating protein-protein interactions. Using homology modeling and site-directed mutagenesis, we have localized the RNA-binding surface of the Smaug SAM domain and have elaborated the RNA consensus sequence required for binding. Residues that compose the RNA-binding surface are conserved in a subgroup of SAM domain–containing proteins, suggesting that the function of the domain is conserved from yeast to humans. We show here that the SAM domain of Saccharomyces cerevisiae Vts1 binds RNA with the same specificity as Smaug and that Vts1 induces transcript degradation through a mechanism involving the cytoplasmic deadenylase CCR4. Together, these results suggest that Smaug and Vts1 define a larger class of post-transcriptional regulators that act in part through a common transcript-recognition mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Homology modeling of Smg SAM domain.
Figure 2: Protein determinants of the Smg and Vts1 SAM domains required for SRE binding.
Figure 3: RNA stem-loop determinants for binding to Smg and Vts1.
Figure 4: VTS1 regulates gene expression by destabilizing SRE-bearing transcripts.
Figure 5: VTS1 regulation of gene expression is CCR4 dependent.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Jousset, C. et al. A domain of TEL conserved in a subset of ETS proteins defines a specific oligomerization interface essential to the mitogenic properties of the TEL-PDGFR β oncoprotein. EMBO J. 16, 69–82 (1997).

    Article  CAS  Google Scholar 

  2. Kyba, M. & Brock, H.W. The SAM domain of polyhomeotic, RAE28, and scm mediates specific interactions through conserved residues. Dev. Genet. 22, 74–84 (1998).

    Article  CAS  Google Scholar 

  3. Barr, M.M., Tu, H., Van Aelst, L. & Wigler, M. Identification of Ste4 as a potential regulator of Byr2 in the sexual response pathway of Schizosaccharomyces pombe. Mol. Cell. Biol. 16, 5597–5603 (1996).

    Article  CAS  Google Scholar 

  4. Wu, C., Leberer, E., Thomas, D.Y. & Whiteway, M. Functional characterization of the interaction of Ste50p with Ste11p MAPKKK in Saccharomyces cerevisiae. Mol. Biol. Cell 10, 2425–2440 (1999).

    Article  CAS  Google Scholar 

  5. Golub, T.R., Barker, G.F., Lovett, M. & Gilliland, D.G. Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 77, 307–316 (1994).

    Article  CAS  Google Scholar 

  6. Golub, T.R. et al. Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proc. Natl. Acad. Sci. USA 92, 4917–4921 (1995).

    Article  CAS  Google Scholar 

  7. Golub, T.R., Barker, G.F., Stegmaier, K. & Gilliland, D.G. Involvement of the TEL gene in hematologic malignancy by diverse molecular genetic mechanisms. Curr. Top. Microbiol. Immunol. 211, 279–288 (1996).

    CAS  PubMed  Google Scholar 

  8. Lacronique, V. et al. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 278, 1309–1312 (1997).

    Article  CAS  Google Scholar 

  9. Slupsky, C.M. et al. Structure of the Ets-1 pointed domain and mitogen-activated protein kinase phosphorylation site. Proc. Natl. Acad. Sci. USA 95, 12129–12134 (1998).

    Article  CAS  Google Scholar 

  10. Chi, S.W., Ayed, A. & Arrowsmith, C.H. Solution structure of a conserved C-terminal domain of p73 with structural homology to the SAM domain. EMBO J. 18, 4438–4445 (1999).

    Article  CAS  Google Scholar 

  11. Thanos, C.D. et al. Monomeric structure of the human EphB2 sterile α motif domain. J. Biol. Chem. 274, 37301–37306 (1999).

    Article  CAS  Google Scholar 

  12. Wang, W.K. et al. Structure of the C-terminal sterile α-motif (SAM) domain of human p73 α. Acta. Crystallogr. D. 57, 545–551 (2001).

    Article  CAS  Google Scholar 

  13. Stapleton, D., Balan, I., Pawson, T. & Sicheri, F. The crystal structure of an Eph receptor SAM domain reveals a mechanism for modular dimerization. Nat. Struct. Biol. 6, 44–49 (1999).

    Article  CAS  Google Scholar 

  14. Thanos, C.D., Goodwill, K.E. & Bowie, J.U. Oligomeric structure of the human EphB2 receptor SAM domain. Science 283, 833–836 (1999).

    Article  CAS  Google Scholar 

  15. Smalla, M. et al. Solution structure of the receptor tyrosine kinase EphB2 SAM domain and identification of two distinct homotypic interaction sites. Protein Sci. 8, 1954–1961 (1999).

    Article  CAS  Google Scholar 

  16. Kim, C.A. et al. Polymerization of the SAM domain of TEL in leukemogenesis and transcriptional repression. Embo J. 20, 4173–4182 (2001).

    Article  CAS  Google Scholar 

  17. Kim, C.A., Gingery, M., Pilpa, R.M. & Bowie, J.U. The SAM domain of polyhomeotic forms a helical polymer. Nat. Struct. Biol. 9, 453–457 (2002).

    CAS  PubMed  Google Scholar 

  18. Smibert, C.A., Lie, Y.S., Shillinglaw, W., Henzel, W.J. & Macdonald, P.M. Smaug, a novel and conserved protein, contributes to repression of nanos mRNA translation in vitro. RNA 5, 1535–1547 (1999).

    Article  CAS  Google Scholar 

  19. Dahanukar, A., Walker, J.A. & Wharton, R.P. Smaug, a novel RNA-binding protein that operates a translational switch in Drosophila. Mol. Cell 4, 209–218 (1999).

    Article  CAS  Google Scholar 

  20. Wang, C. & Lehmann, R. Nanos is the localized posterior determinant in Drosophila. Cell 66, 637–647 (1991).

    Article  CAS  Google Scholar 

  21. Gavis, E.R. & Lehmann, R. Localization of nanos RNA controls embryonic polarity. Cell 71, 301–313 (1992).

    Article  CAS  Google Scholar 

  22. Wang, C., Dickinson, L.K. & Lehmann, R. Genetics of nanos localization in Drosophila. Dev. Dyn. 199, 103–115 (1994).

    Article  CAS  Google Scholar 

  23. Bergsten, S.E. & Gavis, E.R. Role for mRNA localization in translational activation but not spatial restriction of nanos RNA. Development 126, 659–669 (1999).

    CAS  Google Scholar 

  24. Gavis, E.R. & Lehmann, R. Translational regulation of nanos by RNA localization. Nature 369, 315–318 (1994).

    Article  CAS  Google Scholar 

  25. Smibert, C.A., Wilson, J.E., Kerr, K. & Macdonald, P.M. smaug protein represses translation of unlocalized nanos mRNA in the Drosophila embryo. Genes Dev. 10, 2600–2609 (1996).

    Article  CAS  Google Scholar 

  26. LeTilly, V. & Royer, C.A. Fluorescence anisotropy assays implicate protein-protein interactions in regulating trp repressor DNA binding. Biochemistry 32, 7753–7758 (1993).

    Article  CAS  Google Scholar 

  27. Dilcher, M., Kohler, B. & von Mollard, G.F. Genetic interactions with the yeast Q-SNARE VTI1 reveal novel functions for the R-SNARE YKT6. J. Biol. Chem. 276, 34537–34544 (2001).

    Article  CAS  Google Scholar 

  28. Crucs, S., Chatterjee, S. & Gavis, E.R. Overlapping but distinct RNA elements control repression and activation of nanos translation. Mol. Cell 5, 457–467 (2000).

    Article  CAS  Google Scholar 

  29. McCarthy, J.E. Posttranscriptional control of gene expression in yeast. Microbiol. Mol. Biol. Rev. 62, 1492–1553 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Tucker, M. et al. The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 104, 377–386 (2001).

    Article  CAS  Google Scholar 

  31. Tucker, M., Staples, R.R., Valencia-Sanchez, M.A., Muhlrad, D. & Parker, R. Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae. EMBO J. 21, 1427–1436 (2002).

    Article  CAS  Google Scholar 

  32. Brown, C.E., Tarun, S.Z. Jr., Boeck, R. & Sachs, A.B. PAN3 encodes a subunit of the Pab1p-dependent poly(A) nuclease in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 5744–5753 (1996).

    Article  CAS  Google Scholar 

  33. Conti, E., Uy, M., Leighton, L., Blobel, G. & Kuriyan, J. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin α. Cell 94, 193–204 (1998).

    Article  CAS  Google Scholar 

  34. Huber, A.H. & Weis, W.I. The structure of the β-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by β-catenin. Cell 105, 391–402 (2001).

    Article  CAS  Google Scholar 

  35. Edwards, T.A., Pyle, S.E., Wharton, R.P. & Aggarwal, A.K. Structure of Pumilio reveals similarity between RNA and peptide binding motifs. Cell 105, 281–289 (2001).

    Article  CAS  Google Scholar 

  36. Wang, X., McLachlan, J., Zamore, P.D. & Hall, T.M. Modular recognition of RNA by a human pumilio-homology domain. Cell 110, 501–12 (2002).

    Article  CAS  Google Scholar 

  37. Jacobson, A. & Peltz, S.W. Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells. Annu. Rev. Biochem. 65, 693–739 (1996).

    Article  CAS  Google Scholar 

  38. Gavis, E.R., Lunsford, L., Bergsten, S.E. & Lehmann, R. A conserved 90 nucleotide element mediates translational repression of nanos RNA. Development 122, 2791–2800 (1996).

    CAS  Google Scholar 

  39. Suzuki, H. et al. Homodimer of two F-box proteins betaTrCP1 or betaTrCP2 binds to IκBα for signal-dependent ubiquitination. J. Biol. Chem. 275, 2877–2884 (2000).

    Article  CAS  Google Scholar 

  40. Kominami, K., Ochotorena, I. & Toda, T. Two F-box/WD-repeat proteins Pop1 and Pop2 form hetero- and homo-complexes together with cullin-1 in the fission yeast SCF (Skp1-Cullin- 1-F-box) ubiquitin ligase. Genes Cells 3, 721–735 (1998).

    Article  CAS  Google Scholar 

  41. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. & Higgins, D.G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882 (1997).

    Article  CAS  Google Scholar 

  42. Page, R.D.M. TREEVIEW: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12, 357 (1996).

    CAS  PubMed  Google Scholar 

  43. Ponting, C.P., Schultz, J., Milpetz, F. & Bork, P. SMART: identification and annotation of domains from signalling and extracellular protein sequences. Nucleic Acids Res. 27, 229–232 (1999).

    Article  CAS  Google Scholar 

  44. Guex, N. & Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723 (1997).

    Article  CAS  Google Scholar 

  45. Carson, M. Ribbons. Methods Enzymol. 277, 493–505 (1997).

    Article  CAS  Google Scholar 

  46. Nicholls, A., Sharp, K. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  47. Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002).

    Article  CAS  Google Scholar 

  48. Tyers, M. et al. Characterization of G1 and mitotic cyclins of budding yeast. Cold Spring Harb. Symp. Quant. Biol. 56, 21–32 (1991).

    Article  CAS  Google Scholar 

  49. Bonnerot, C., Boeck, R. & Lapeyre, B. The two proteins Pat1p (Mrt1p) and Spb8p interact in vivo, are required for mRNA decay, and are functionally linked to Pab1p. Mol. Cell. Biol. 20, 5939–5946 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Glover and M. Tyers for plasmids p413–GFP and FLAG–VTS1, respectively. We also thank D. Durocher and R. Collins for assistance with assay development and A. Willems for relating the similarity between the SSR1 domain of Smaug and the dimerization domain of βTRCP. We are grateful to P.S. Metalnikov and P. O'Donnel for assistance with mass spectrometry. C.A.S is supported by a Canadian Institutes of Health Research (CIHR) scholarship. F.S. is a Research Scientist of the National Cancer Institute of Canada (NCIC). This work was supported by operating grants from the CIHR and the NCIC with funds from the Terry Fox Run.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Frank Sicheri or Craig A Smibert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aviv, T., Lin, Z., Lau, S. et al. The RNA-binding SAM domain of Smaug defines a new family of post-transcriptional regulators. Nat Struct Mol Biol 10, 614–621 (2003). https://doi.org/10.1038/nsb956

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb956

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing