Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of the BAFF–BAFF-R complex and its implications for receptor activation

Abstract

B-cell activating factor (BAFF) is a key regulator of B-lymphocyte development. Its biological role is mediated by the specific receptors BCMA, TACI and BAFF-R. We have determined the crystal structure of the extracellular domain of BAFF-R bound to BAFF at a resolution of 3.3 Å. The cysteine-rich domain (CRD) of the BAFF-R extracellular domain adopts a β-hairpin structure and binds to the virus-like BAFF cage in a 1:1 molar ratio. The conserved DxL motif of BAFF-R is located on the tip of the β-turn and is indispensable in the binding of BAFF. The crystal structure shows that a unique dimeric contact occurs between the BAFF-R monomers in the virus-like cage complex. The extracellular domain of TACI contains two CRDs, both of which contain the DxL motif. Modeling of TACI–BAFF complex suggests that both CDRs simultaneously interact with the BAFF dimer in the virus-like cage.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the BAFF-R extracellular domains bound to the virus-like BAFF cage.
Figure 2: Structure of the BAFF-R CRD.
Figure 3: BAFF-R and BAFF interactions.
Figure 4: Comparison of the structures of the TNF-receptor family CRDs.
Figure 5: Characterization of the BAFF and TACI interaction.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Rolink, A.G. & Melchers, F. BAFFled B cells survive and thrive: roles of BAFF in B-cell development. Curr. Opin. Immunol. 14, 266–275 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Mackay, F. & Mackay, C.R. The role of BAFF in B-cell maturation, T-cell activation and autoimmunity. Trends Immunol. 23, 113–115 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Do, R.K. & Chen-Kiang, S. Mechanism of BLyS action in B cell immunity. Cytokine Growth Factor Rev. 13, 19–25 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Tribouley, C. et al. Characterization of a new member of the TNF family expressed on antigen-presenting cells. Biol. Chem. 380, 1443–1447 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Shu, H.B., Hu, W.H. & Johnson, H. TALL-1 is a novel member of the TNF family that is down-regulated by mitogens. J. Leukoc. Biol. 65, 680–683 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Mukhopadhyay, A., Ni, J., Zhai, Y., Yu, G.L. & Aggarwal, B.B. Identification and characterization of a novel cytokine, THANK, a TNF homologue that activates apoptosis, nuclear factor-κB, and c-Jun NH2-terminal kinase. J. Biol. Chem. 274, 15978–15981 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Hu, S., Tamada, K., Ni, J., Vincenz, C. & Chen, L. Characterization of TNFRSF19, a novel member of the tumor necrosis factor receptor superfamily. Genomics 62, 103–107 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Moore, P.A. et al. BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science 285, 260–263 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Schneider, P. et al. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J. Exp. Med. 189, 1747–1756 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gross, J.A. et al. TACI-Ig neutralizes molecules critical for B cell development and autoimmune disease. Impaired B cell maturation in mice lacking BLyS. Immunity 15, 289–302 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Schiemann, B. et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science 293, 2111–2114 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Khare, S.D. et al. Severe B cell hyperplasia and autoimmune disease in TALL-1 transgenic mice. Proc. Natl. Acad. Sci. USA 97, 3370–3375 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mackay, F. et al. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J. Exp. Med. 190, 1697–1710 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Groom, J. et al. Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjogren's syndrome. J. Clin. Invest. 109, 59–68 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gross, J.A. et al. TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature 404, 995–999 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, J. et al. Cutting edge: a role for B lymphocyte stimulator in systemic lupus erythematosus. J. Immunol. 166, 6–10 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Cheema, G.S., Roschke, V., Hilbert, D.M. & Stohl, W. Elevated serum B lymphocyte stimulator levels in patients with systemic immune-based rheumatic diseases. Arthritis Rheum. 44, 1313–1319 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Yan, M. et al. Identification of a receptor for BLyS demonstrates a crucial role in humoral immunity. Nat. Immunol. 1, 37–41 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Xia, X.Z. et al. TACI is a TRAF-interacting receptor for TALL-1, a tumor necrosis factor family member involved in B cell regulation. J. Exp. Med. 192, 137–143 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, H. et al. TACI-ligand interactions are required for T cell activation and collagen-induced arthritis in mice. Nat. Immunol. 2, 632–637 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Karpusas, M. et al. Crystal structure of extracellular human BAFF, a TNF family member that stimulates B lymphocytes. J. Mol. Biol. 315, 1145–1154 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Oren, D.A. et al. Structural basis of BLyS receptor recognition. Nat. Struct. Biol. 9, 288–292 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Liu, Y. et al. Crystal structure of sTALL-1 reveals a virus-like assembly of TNF family ligands. Cell 108, 383–394 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Yan, M. et al. Identification of a novel receptor for B lymphocyte stimulator that is mutated in a mouse strain with severe B cell deficiency. Curr. Biol. 11, 1547–1552 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Thompson, J.S. et al. BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF. Science 293, 2108–2111 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Thompson, J.S. et al. BAFF binds to the tumor necrosis factor receptor-like molecule B cell maturation antigen and is important for maintaining the peripheral B cell population. J. Exp. Med. 192, 129–135 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Marsters, S.A. et al. Interaction of the TNF homologues BLyS and APRIL with the TNF receptor homologues BCMA and TACI. Curr. Biol. 10, 785–788 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Seshasayee, D. et al. Loss of TACI causes fatal lymphoproliferation and autoimmunity, establishing TACI as an inhibitory BLyS receptor. Immunity 18, 279–288 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. von Bulow, G.U., van Deursen, J.M. & Bram, R.J. Regulation of the T-independent humoral response by TACI. Immunity 14, 573–582 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Yan, M. et al. Activation and accumulation of B cells in TACI-deficient mice. Nat. Immunol. 2, 638–643 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Locksley, R.M., Killeen, N. & Lenardo, M.J. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104, 487–501 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Bodmer, J.L., Schneider, P. & Tschopp, J. The molecular architecture of the TNF superfamily. Trends Biochem. Sci. 27, 19–26 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Naismith, J.H., Devine, T.Q., Kohno, T. & Sprang, S.R. Structures of the extracellular domain of the type I tumor necrosis factor receptor. Structure 4, 1251–1262 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Naismith, J.H. & Sprang, S.R. Modularity in the TNF-receptor family. Trends Biochem. Sci. 23, 74–79 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Mongkolsapaya, J. et al. Structure of the TRAIL-DR5 complex reveals mechanisms conferring specificity in apoptotic initiation. Nat. Struct. Biol. 6, 1048–1053 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Hymowitz, S.G. et al. Triggering cell death: the crystal structure of Apo2L/TRAIL in a complex with death receptor 5. Mol. Cell 4, 563–571 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Banner, D.W. et al. Crystal structure of the soluble human 55 kD TNF receptor-human TNF β-complex: implications for TNF receptor activation. Cell 73, 431–445 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Kayagaki, N. et al. BAFF/BLyS receptor 3 binds the B cell survival factor BAFF ligand through a discrete surface loop and promotes processing of NF-κB2. Immunity 17, 515–524 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Madry, C. et al. The characterization of murine BCMA gene defines it as a new member of the tumor necrosis factor receptor superfamily. Int. Immunol. 10, 1693–1702 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. A 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  42. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta. Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  43. Vriend, G. WHAT IF: a molecular modeling and drug design program. J. Mol. Graph. 8, 52–56 (1990).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the staff of the Cornell High Energy Synchrotron Source (MacCHESS) and Spring-8 for help with data collection. This work was supported in part by the Molecular Medicine Research Group Program of the Ministry of Science (J.-O.L) and Technology and by a Korea Research Foundation Grant (H.L.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hayyoung Lee or Jie-Oh Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H., Yu, K., Lee, M. et al. Crystal structure of the BAFF–BAFF-R complex and its implications for receptor activation. Nat Struct Mol Biol 10, 342–348 (2003). https://doi.org/10.1038/nsb925

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb925

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing