Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamics of herpes simplex virus capsid maturation visualized by time-lapse cryo-electron microscopy

Abstract

The capsid of the herpes simplex virus initially assembles as a procapsid that matures through a massive conformational change of its 182 MDa surface shell. This transition, which stabilizes the fragile procapsid, is facilitated by the viral protease that releases the interaction between the shell and the underlying scaffold; however, protease-deficient procapsids mature slowly in vitro. To study procapsid maturation as a time-resolved process, we monitored this reaction by cryo-electron microscopy (cryo-EM). The resulting images were sorted into 17 distinct classes, and three-dimensional density maps were calculated for each. When arranged in a chronological series, these maps yielded molecular movies of procapsid maturation. A single major switching event takes place at stages 8–9, preceded by relatively subtle adjustments in the pattern of interactions and followed by similarly small 'aftershocks'. The primary mechanism underlying maturation is relative rotations of domains of VP5, the major capsid protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Surface lattice of a herpesvirus capsid.
Figure 2: Cryo-electron micrographs of HSV1 procapsids.
Figure 3: Time course of procapsid maturation in vitro.
Figure 4: Molecular anatomy of the HSV-1 capsid end states.
Figure 5: Maturation pathway of the HSV-1 procapsid.
Figure 6: Pathway of events during HSV-1 procapsid maturation.
Figure 7: Progressive changes in buried surface area during HSV-1 procapsid maturation.

Similar content being viewed by others

References

  1. Newcomb, W.W. et al. Assembly of the herpes simplex virus capsid: characterization of intermediates observed during cell-free capsid formation. J. Mol. Biol. 263, 432–446 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Trus, B.L. et al. The herpes simplex virus procapsid: structure, conformational changes upon maturation, and roles of the triplex proteins VP19c and VP23 in assembly. J. Mol. Biol. 263, 447–462 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Steven, A.C., Couture, E., Aebi, U. & Showe, M.K. Structure of T4 polyheads. II. A pathway of polyhead transformation as a model for T4 capsid maturation. J. Mol. Biol. 106, 187–221 (1976).

    Article  CAS  PubMed  Google Scholar 

  4. Wurtz, M., Kistler, J. & Hohn, T. Surface structure of in vitro assembled bacteriophage-λ polyheads. J. Mol. Biol. 101, 39–56 (1976).

    Article  CAS  PubMed  Google Scholar 

  5. Canady, M.A., Tihova, M., Hanzlik, T.N., Johnson, J.E. & Yeager, M. Large conformational changes in the maturation of a simple RNA virus, Nudaurelia capensis omega virus (NomegaV). J. Mol. Biol. 299, 573–584 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Turner, B.G. & Summers, M.F. Structural biology of HIV. J. Mol. Biol. 285, 1–32 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Duda, R.L. et al. Structural transitions during bacteriophage HK97 head assembly. J. Mol. Biol. 247, 618–635 (1995).

    CAS  PubMed  Google Scholar 

  8. Dokland, T. & Murialdo, H. Structural transitions during maturation of bacteriophage-λ capsids. J. Mol. Biol. 233, 682–694 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Prasad, B.V.V. et al. Three-dimensional transformation of capsids associated with genome packaging in a bacterial virus. J. Mol. Biol. 231, 65–74 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Conway, J.F., Duda, R.L., Cheng, N., Hendrix, R.W. & Steven, A.C. Proteolytic and conformational control of virus capsid maturation: the bacteriophage HK97 system. J. Mol. Biol. 253, 86–99 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Butcher, S.J., Dokland, T., Ojala, P.M., Bamford, D.H. & Fuller, S.D. Intermediates in the assembly pathway of the double-stranded RNA virus φ6. EMBO J. 16, 4477–4487 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tao, Y. et al. Assembly of a tailed bacterial virus and its genome release studied in three dimensions. Cell 95, 431–437 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cerritelli, M.E., Conway, J.F., Cheng, N., Trus, B.L. & Steven, A.C. Molecular mechanisms in bacteriophage T7 assembly, maturation and DNA containment. Adv. Prot. Chem., in the press.

  14. Cheng, N. et al. Handedness of the herpes simplex virus capsid and procapsid. J. Virol. 76, 7855–7859 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Onorato, L., Stirmer, B. & Showe, M.K. Isolation and characterization of bacteriophage T4 mutant preheads. J. Virol. 27, 409–426 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ross, P.D., Black, L.W., Bisher, M.E. & Steven, A.C. Assembly-dependent conformational changes in a viral capsid protein. Calorimetric comparison of successive conformational states of the gp23 surface lattice of bacteriophage T4. J. Mol. Biol. 183, 353–364 (1985).

    Article  CAS  PubMed  Google Scholar 

  17. Galisteo, M.L. & King, J. Conformational transformations in the protein lattice of phage P22 procapsids. Biophys. J. 65, 227–235 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Conway, J.F. et al. Virus maturation involving large subunit rotations and local refolding. Science 292, 744–748 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Newcomb, W.W. et al. Structure of the herpes simplex virus capsid: molecular composition of the pentons and triplexes. J. Mol. Biol. 232, 499–511 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Lata, R. et al. Maturation dynamics of a viral capsid: visualization of transitional intermediate states. Cell 100, 253–63 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Gao, M. et al. The protease of herpes simplex virus type 1 is essential for functional capsid formation and viral growth. J. Virol. 68, 3702–3712 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Newcomb, W.W. et al. Isolation of herpes simplex virus procapsids from cells infected with a protease-deficient mutant virus. J. Virol. 74, 1663–1673 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Trus, B.L. et al. Herpes simplex virus capsids assembled in insect cells infected with recombinant baculoviruses: structural authenticity and localization of VP26. J. Virol. 69, 7362–7366 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Newcomb, W.W. et al. Assembly of the herpes simplex virus procapsid from purified components and identification of small complexes containing the major capsid and scaffolding proteins. J. Virol. 73, 4239–4250 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Rixon, F.J. & McNab, D. Packaging-competent capsids of a herpes simplex virus temperature-sensitive mutant have properties similar to those of in vitro-assembled procapsids. J. Virol. 73, 5714–5721 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. King, J. & Chiu, W. The procapsid-to-capsid transition in double-stranded DNA bacteriophages. in Structural Biology of Viruses (eds. Chiu, W., Burnett, R.M. & Garcea, R.) 288–311 (Oxford University Press, New York, 1997).

    Google Scholar 

  27. Saibil, H.R. Conformational changes studied by cryo-electron microscopy. Nat. Struct. Biol. 7, 711–714 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Berriman, J. & Unwin, N. Analysis of transient structures by cryo-microscopy combined with rapid mixing of spray droplets. Ultramicroscopy 56, 241–252 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Walker, M., Trinick, J. & White, H. Millisecond time resolution electron cryo-microscopy of the Mg-ATP transient kinetic state of the acto-myosin ATPase. Biophys. J. 68, 87S–91S (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Rixon, F.J., Cross, A.M., Addison, C. & Preston, V.G. The products of herpes simplex virus type 1 gene UL26 which are involved in DNA packaging are strongly associated with empty but not with full capsids. J. Gen. Virol. 69, 2879–2891 (1988).

    Article  CAS  PubMed  Google Scholar 

  31. Gibson, W., Marcy, A.I., Comolli, J.C. & Lee, J. Identification of precursor to cytomegalovirus capsid assembly protein and evidence that processing results in loss of its carboxy-terminal end. J. Virol. 64, 1241–1249 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu, F. & Roizman, B. Characterization of the protease and other products of amino-terminus-proximal cleavage of the herpes simplex virus 1 UL26 protein. J. Virol. 67, 1300–1309 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Morse, P.M. Thermal Physics (W.W. Benjamin, New York; 1964).

    Google Scholar 

  34. Steven, A.C. & Carrascosa, J.L. Proteolytic cleavage and structural transformation: their relationship in bacteriophage T4 capsid maturation. J. Supramol. Struct. 10, 1–11 (1979).

    Article  CAS  PubMed  Google Scholar 

  35. He, J., Schmid, M.F., Zhou, Z.H., Rixon, F. & Chiu, W. Finding and using local symmetry in identifying lower domain movements in hexon subunits of the herpes simplex virus type 1 B capsid. J. Mol. Biol. 309, 903–914 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Jontes, J.D., Wilson-Kubalek, E.M. & Milligan, R.A. A 32 degree tail swing in brush border myosin I on ADP release [see comments]. Nature 378, 751–753 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Roseman, A.M., Chen, S., White, H., Braig, K. & Saibil, H.R. The chaperonin ATPase cycle: mechanism of allosteric switching and movements of substrate-binding domains in GroEL. Cell 87, 241–252 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Conway, J.F. et al. The effects of radiation damage on the structure of frozen hydrated HSV-1 capsids. J. Struct. Biol. 111, 222–233 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Trus, B.L., Kocsis, E., Conway, J.F. & Steven, A.C. Digital image processing of electron micrographs: the PIC system-III. J. Struct. Biol. 116, 61–67 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Heymann, J.B. Bsoft: image and molecular processing in electron microscopy. J. Struct. Biol. 133, 156–169 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Baker, T.S. & Cheng, R.H. A model-based approach for determining orientations of biological macromolecules imaged by cryoelectron microscopy. J. Struct. Biol. 116, 120–130 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Steven, A.C. et al. Hexavalent capsomers of herpes simplex virus type 2: symmetry, shape, dimensions, and oligomeric status. J. Virol. 57, 578–584 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhou, Z.H., Prasad, B.V.V., Jakana, J., Rixon, F.J. & Chiu, W. Protein subunit structures in the herpes simplex virus capsid determined from 400-kV spot-scan electron cryomicroscopy. J. Mol. Biol. 242, 456–469 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Belnap for programming contributions. This project was supported in part by the NIH Targeted Antiviral Program (A.C.S.). J.C.B. acknowledges grant support from the NIH and the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alasdair C. Steven.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Video 1

During the maturation process, the herpes simplex virus 1 precursor particle (procapsid) progresses through a succession of states from the naïve procapsid (state 1) to the fully mature capsid (state 17). The states were captured by cryo-EM and image reconstruction and are displayed here as time-lapse videos. The number (upper left) refers to the state. The particle is a T = 16 icosahedron, 1,250 Å in diameter. (MOV 3434 kb)

Video 1 shows the changes in the outer surface.

Supplementary Video 2

Video 2 shows the changes in the inner surface of the capsid viewed along a two-fold axis of symmetry. (MOV 4031 kb)

Supplementary Video 3

Video 3 is a close-up view of a portion of the inner surface. (MOV 3833 kb)

Supplementary Video 4

Video 4 is a close-up view of a portion the outer surface, centered on a peripentonal hexon (P-hexon). To its left is a penton, and to its right, an E-hexon (edge hexon). (MOV 3673 kb)

Supplementary Video 5

Video 5 shows a cutaway view through part of the surface shell, which is 150 Å thick. It sections through hexons and pentons of the major capsid protein and through the triplex complexes located at local three-fold symmetry axes. The inner scaffolding shell is not shown. (MOV 3081 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heymann, J., Cheng, N., Newcomb, W. et al. Dynamics of herpes simplex virus capsid maturation visualized by time-lapse cryo-electron microscopy. Nat Struct Mol Biol 10, 334–341 (2003). https://doi.org/10.1038/nsb922

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb922

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing