Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of the ascorbate peroxidase–ascorbate complex

Abstract

Heme peroxidases catalyze the H2O2-dependent oxidation of a variety of substrates, most of which are organic. Mechanistically, these enzymes are well characterized: they share a common catalytic cycle that involves formation of a two-electron, oxidized Compound I intermediate followed by two single-electron reduction steps by substrate. The substrate specificity is more diverse — most peroxidases oxidize small organic substrates, but there are prominent exceptions — and there is a notable absence of structural information for a representative peroxidase–substrate complex. Thus, the features that control substrate specificity remain undefined. We present the structure of the complex of ascorbate peroxidase–ascorbate. The structure defines the ascorbate-binding interaction for the first time and provides new rationalization of the unusual functional features of the related cytochrome c peroxidase enzyme, which has been a benchmark for peroxidase catalysis for more than 20 years. A new mechanism for electron transfer is proposed that challenges existing views of substrate oxidation in other peroxidases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The active site of rsAPX32,33.
Figure 2: The ascorbate-binding site.
Figure 3: Comparison of APX and CcP.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Welinder, K.G. Superfamily of plant, fungal and bacterial peroxidases. Curr. Opin. Struct. Biol. 2, 388–393 (1992).

    Article  CAS  Google Scholar 

  2. Everse, J., Everse, K.E., & Grisham, M.B. Peroxidases in Chemistry and Biology Vol. I and II (CRC Press, Boca Raton; 1991).

    Google Scholar 

  3. Dunford, H.B. Heme Peroxidases (John Wiley, Chichester; 1999).

    Google Scholar 

  4. Poulos, T.L. et al. The crystal structure of cytochrome c peroxidase. J. Biol. Chem. 255, 575–580 (1980).

    CAS  PubMed  Google Scholar 

  5. Raven, E.L. Peroxidase-catalysed oxidation of ascorbate: structural, spectroscopic and mechanistic correlations in ascorbate peroxidase. in Subcellular Biochemistry: Enzyme Catalysed Electron and Radical Transfer (eds. Holzenberg, A. & Scrutton, N.S.) 318–350 (Kluwer Academic/Plenum, New York; 2000).

    Google Scholar 

  6. Dalton, D.A. Ascorbate peroxidase. in Peroxidases in Chemistry and Biology (eds. Everse, J., Everse, K.E. & Grisham, M.B.) 139–154 (CRC Press, Boca Raton, 1991).

    Google Scholar 

  7. Patterson, W.R., Poulos, T.L. & Goodin, D.B. Identification of a porphyrin π-cation radical in ascorbate peroxidase Compound I. Biochemistry 34, 4342–4345 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Patterson, W.R. & Poulos, T.L. Crystal structure of recombinant pea cytosolic ascorbate peroxidase. Biochemistry 34, 4331–4341 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Dalton, D.A., Hanus, F.J., Russell, S.A. & Evans, H.J. Purification, properties and distribution of ascorbate peroxidase in legume root nodules. Plant Physiol. 83, 789–794 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jones, D.K., Dalton, D.A., Rosell, F.I. & Lloyd Raven, E. Class I heme peroxidases: characterisation of soybean ascorbate peroxidase. Arch. Biochem. Biophys. 360, 173–178 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Harding, M.M. Metal-ligand geometry relevant to proteins and in proteins: sodium and potassium. Acta Crystallogr. D 58, 872–874 (2002).

    Article  PubMed  Google Scholar 

  12. Hill, A.P. et al. Chemical, spectroscopic and structural investigation of the substrate-binding site in ascorbate peroxidase. Eur. J. Biochem. 248, 347–354 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Mandelman, D., Jamal, J. & Poulos, T.L. Identification of two-electron transfer sites in ascorbate peroxidase using chemical modification, enzyme kinetics, and crystallography. Biochemistry 37, 17610–17617 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Bursey, E.H. & Poulos, T.L. Two substrate binding sites in ascorbate peroxidase: the role of arginine 172. Biochemistry 39, 7374–7379 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Lad, L., Mewies, M. & Raven, E.L. Substrate binding and catalytic mechanism in ascorbate peroxidase: evidence for two ascorbate binding sites. Biochemistry 41, 13774–13781 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Pelletier, H. & Kraut, J. Crystal structure of a complex between electron transfer partners, cytochrome c peroxidase and cytochrome c. Science 258, 1748–1755 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Zhou, J.S., Tran, S.T., McLendon, G. & Hoffman, B.M. Photoinduced electron transfer between cytochrome c peroxidase (D37K) and Zn-substituted cytochrome c: probing the two-domain binding and reactivity of the peroxidase. J. Am. Chem. Soc. 119, 269–277 (1997).

    Article  CAS  Google Scholar 

  18. Sundaramoorthy, M., Kishi, K., Gold, M.H. & Poulos, T.L. The crystal structure of manganase peroxidase from Phanerochaete crysosporium at 2.06 Å resolution. J. Biol. Chem. 269, 32759–32767 (1994).

    CAS  PubMed  Google Scholar 

  19. Henriksen, A., Smith, A.T. & Gajhede, M. The structures of the horseradish peroxidase C-ferulic acid complex and the ternary complex with cyanide suggest how peroxidases oxidise small phenolic substrates. J. Biol. Chem. 274, 35005–35011 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Henriksen, A. et al. Structural interactions between horseradish peroxidase C and the substrate benzhydroxamic acid determined by X-ray crystallography. Biochemistry 37, 8054–8060 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Yonetani, T. & Ray, G.S. Studies on cytochrome c peroxidase. Purification and some properties. J. Biol. Chem. 240, 4503–4514 (1965).

    CAS  PubMed  Google Scholar 

  22. Mauro, J.M. et al. Tryptophan-191-phenylalanine, a proximal-side mutation in yeast cytochrome c peroxidase that strongly affects the kinetics of ferrocytochrome c oxidation. Biochemistry 27, 6243–6256 (1988).

    Article  CAS  PubMed  Google Scholar 

  23. Pappa, H., Patterson, W.R. & Poulos, T.L. The homologous tryptophan critical for cytochrome c peroxidase function is not essential for ascorbate peroxidase activity. J. Biol. Inorg. Chem. 1, 61–66 (1996).

    Article  CAS  Google Scholar 

  24. Hiner, A.N.P. et al. Detection of a radical intermediate in the reaction of ascorbate peroxidase with hydrogen peroxide. Eur. J. Biochem. 268, 3091–3098 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Miyake, C. & Asada, K. Inactivation mechanism of ascorbate peroxidase at low concentrations of ascorbate: hydrogen peroxide decomposes Compound I of ascorbate peroxidase. Plant Cell Physiol. 37, 423–430 (1996).

    Article  CAS  Google Scholar 

  26. Ator, M.A. & Ortiz de Montellano, P.R. Protein control of prosthetic heme reactivity. J. Biol. Chem. 262, 1542–1551 (1987).

    CAS  PubMed  Google Scholar 

  27. Berglund, G.I. et al. The catalytic pathway of horseradish peroxidase at high resolution. Nature 417, 463–468 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Otwinoski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 227, 366–396 (1997).

    Google Scholar 

  29. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  30. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Murshudov, G., Vagin, A., Lebedev, A., Wilson, K. & Dodson, E. Efficient anisotropic refinement of macromolecular structures using FFT. Acta Crystallogr. D 55, 247–255 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. McRee, D. A visual protein crystallographic software system for X11/Xview. J. Mol. Graph. 10, 44–47 (1992).

    Article  Google Scholar 

  33. Merrit, E.A. & Murphy, M.E.P. Raster3D version 2.0 — a program for photorealistic molecular graphics. Acta Crystallogr. D 50, 869–873 (1994).

    Article  Google Scholar 

  34. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  35. Bryan, D.M. et al. Stable pentaammineruthenium(III) complexes of reductic acids: synthesis, linkage isomers and autoxidation kinetics. J. Am. Chem. Soc. 110, 1498–1506 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to D. Dalton for providing the expression vector for rsAPX. We thank K. Singh for technical assistance, D. Leys for data collection and C. Metcalfe for helpful discussions. We are grateful to the EMBL outstation at DESY Hamburg and ESRF Grenoble for the provision of synchrotron radiation. This work was supported by grants from the BBSRC, the Wellcome Trust, the EPSRC and the Royal Society.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharp, K., Mewies, M., Moody, P. et al. Crystal structure of the ascorbate peroxidase–ascorbate complex. Nat Struct Mol Biol 10, 303–307 (2003). https://doi.org/10.1038/nsb913

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb913

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing