Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The nature of the di-iron site in the bacterioferritin from Desulfovibrio desulfuricans

Abstract

The first crystal structure of a native di-iron center in an iron-storage protein (bacterio)ferritin is reported. The protein, isolated from the anaerobic bacterium Desulfovibrio desulfuricans, has the unique property of having Fe-coproporphyrin III as its heme cofactor. The three-dimensional structure of this bacterioferritin was determined in three distinct catalytic/redox states by X-ray crystallography (at 1.95, 2.05 and 2.35 Å resolution), corresponding to different intermediates of the di-iron ferroxidase site. Conformational changes associated with these intermediates support the idea of a route for iron entry into the protein shell through a pore that passes through the di-iron center. Molecular surface and electrostatic potential calculations also suggest the presence of another ion channel, distant from the channels at the three- and four-fold axes proposed as points of entry for the iron atoms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall view of the Dd Bfr in structure A.
Figure 2: Stereo view of the electron density averaged over eight independent dimers of the Fe-coproporphyrin III heme cofactor in structure A.
Figure 3: The di-iron center of Dd Bfr.
Figure 4: Views of a Bfr monomer with overlaid molecular surface showing the surface pore that allows access to the di-iron center for structures
Figure 5: Electrostatic potential surfaces of Dd Bfr.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Crichton, R. Intracellular iron storage and biomineralization. in Inorganic Biochemistry of Iron Metabolism: From Molecular Mechanisms to Clinical Consequences 2nd edn. (eds. Boelaert, J.R. et al.) 133–165 (John Wiley, Chichester; 2001).

    Chapter  Google Scholar 

  2. Harrison, P.M., Hempstead, P.D., Artymiuk, P.J. & Andrews, S.C. Structure-function relationships in the ferritins. in Metal Ions in Biological Systems Vol. 35 (eds. Siegel, A. & Siegel, H.) 435–477 (Marcel Dekker, New York; 1998).

    Google Scholar 

  3. Banyard, S.H., Stammers, D.K. & Harrison, P.M. Electron density map of apoferritin at 2.8-Å resolution. Nature 271, 282–284 (1978).

    Article  CAS  PubMed  Google Scholar 

  4. Romão, C.V. et al. A bacterioferritin from the strict anaerobe Desulfovibrio desulfuricans ATCC 27774. Biochemistry 39, 6841–6849 (2000).

    Article  PubMed  Google Scholar 

  5. Romão, C.V. et al. Iron-coproporphyrin III is a natural cofactor in bacterioferritin from the anaerobic bacterium Desulfovibrio desulfuricans. FEBS Lett. 480, 213–216 (2000).

    Article  PubMed  Google Scholar 

  6. da Costa, P.N. et al. The genetic organization of Desulfovibrio desulphuricans ATCC 27774 bacterioferritin and rubredoxin-2 genes: involvement of rubredoxin in iron metabolism. Mol. Microbiol. 41, 217–227 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Trikha, J., Theil, E.C. & Allewell, N.M. High resolution crystal structures of amphibian red-cell L ferritin: potential roles for structural plasticity and solvation in function. J. Mol. Biol. 248, 949–967 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Gallois, B. et al. X-ray structure of recombinant horse L chain apoferritin at 2.0 Å resolution: implications for stability and function. J. Biol. Inorg. Chem. 2, 360–367 (1997).

    Article  CAS  Google Scholar 

  9. Hempstead, P.D. et al. Comparison of the three-dimensional structures of recombinant human H and horse L ferritins at high resolution. J. Mol. Biol. 268, 424–448 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Granier, T. et al. Structure of mouse L-chain ferritin at 1.6 Å resolution. Acta Crystallogr. D 57, 1491–1497 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Stillman, T.J. et al. The high-resolution X-ray crystallographic structure of the ferritin (EcFtnA) of Escherichia coli; comparison with human H ferritin (HuHF) and the structures of the Fe3+ and Zn2+ derivatives. J. Mol. Biol. 307, 587–603 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Frolow, F. & Kalb (Gilboa), A.J. Cytochrome b1 – bacterioferritin. in Handbook of Metalloproteins Vol. 2 (eds. Messerschmidt, A., Huber, R., Poulos, T. & Wieghardt, K.) 782–790 (Wiley, UK; 2001).

    Google Scholar 

  13. Ilari, A., Stefanini, S., Chiancone, E. & Tsernoglou, D. The dodecameric ferritin from Listeria innocua contains a novel intersubunit iron-binding site. Nat. Struct. Biol. 7, 38–43 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Frolow, F., Kalb (Gilboa), A.J. & Yariv, J. Structure of a unique two-fold symmetric heme-binding site. Nat. Struct. Biol. 1, 453–460 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Dautant, A. et al. Structure of a monoclinic crystal from of cyctochrome b1 (bacterioferritin) from E. coli. Acta Crystallogr. D 54, 16–24 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Cobessi, D. et al. The 2.6 Å resolution structure of Rhodobacter capsulatus bacterioferritin with metal-free dinuclear site and heme iron in a crystallographic 'special position'. Acta Crystallogr. D 58, 29–38 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Coelho, A.V. et al. Structure determination of bacterioferritin from Desulfovibrio desulfuricans by the MAD method at the Fe K-edge. Acta Crystallogr. D 57, 326–329 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Theil, E.C. Ferritin. in Handbook of Metalloproteins Vol. 2 (eds. Messerschmidt, A., Huber, R., Poulos, T. & Wieghardt, K.) 771–781 (Wiley, UK; 2001).

    Google Scholar 

  19. Rosenzweig, A.C. et al. Crystal structures of the methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath): implications for substrate gating and component interactions. Proteins 29, 141–152 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Tong, W. et al. Characterization of Y122F R2 of Escherichia coli ribonucleotide reductase by time-resolved physical biochemical methods and X-ray crystallography. Biochemistry 37, 5840–5848 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Gomes, C.M., Gall, J.L., Xavier, A.V. & Teixeira, M. Could a diiron-containing four-helix-bundle protein have been a primitive oxygen reductase? Chembiochem 2, 583–587 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Kurtz, D.M. Jr. Structural similarity and functional diversity in diiron-oxo proteins. J. Biol. Inorg. Chem. 2, 159–167 (1997).

    Article  CAS  Google Scholar 

  23. Yang, X. et al. The iron oxidation and hydrolysis chemistry of Escherichia coli bacterioferritin. Biochemistry 39, 4915–4923 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Bou-Abdallah, F. et al. Iron detoxification properties of Escherichia coli bacterioferritin. Attenuation of oxyradical chemistry. J. Biol. Chem. 277, 37064–37069 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Douglas, T. & Ripoll, D.R. Calculated electrostatic gradients in recombinant human H-chain ferritin. Protein Sci. 7, 1083–1091 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chasteen, N.D. & Harrison, P.M. Mineralization in ferritin: an efficient means of iron storage. J. Struct. Biol. 126, 182–194 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  29. Cowtan, K.D. & Main, P. Miscellaneous algorithms for density modification. Acta Crystallogr. D 54, 487–493 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  31. Kleywegt, G.J., Zou, J.Y., Kjeldgaard, M. & Jones, T.A. Model building and computer graphics. in International Tables for Crystallography, Vol. F, Crystallography of biological macromolecules (eds. Rossmann, M.G. & Arnold, E.) 353–356 (Kluwer Academic Publishers, The Netherlands; 2001).

    Google Scholar 

  32. Read, R.J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A 42, 140–149 (1986).

    Article  Google Scholar 

  33. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Murshodov, G.N., Vagin, A.A., Lebedev, A., Wilson, K.S. & Dodson, E.J. Efficient anisotropic refinement of macromolecular structures using FFT. Acta Crystallogr. D 55, 247–255 (1999).

    Article  Google Scholar 

  35. Sheldrick, G.M. & Schneider, T.R. SHELXL: high-resolution refinement. Methods Enzymol. 277, 319–343 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK — a program to check the stereochemical quality of proteins. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  37. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  38. Merritt, E.A. & Murphy, M.E.P. Raster3D version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr. D 50, 869–873 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Esnouf, R.M. Further additions to MolScript version 1.4, including reading and contouring of electron-density maps. Acta Crystallogr. D 55, 938–940 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Sanner, M.F., Spehner, J.-C. & Olson, A.J. Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38, 305–320 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Bashford, D. An object-oriented programming suite for electrostatic effects in biological molecules. Scientific computing in object-oriented parallel environments. in Lecture Notes in Computer Science Vol. 1343 (eds. Ishikawa, Y., Oldehoeft, R.R., Reynders, J.V.W. & Tholburn, M.) 233–240 (Springer, Berlin; 1997).

    Google Scholar 

Download references

Acknowledgements

This work was supported by PRAXIS XXI and POCTI grants. We thank the ESRF, Grenoble (France) for the provision of synchrotron radiation and for a grant to S.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria A. Carrondo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macedo, S., Romão, C., Mitchell, E. et al. The nature of the di-iron site in the bacterioferritin from Desulfovibrio desulfuricans. Nat Struct Mol Biol 10, 285–290 (2003). https://doi.org/10.1038/nsb909

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb909

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing