Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The H-NS dimerization domain defines a new fold contributing to DNA recognition

Abstract

H-NS, a protein found in Gram-negative bacteria, is involved in structuring the bacterial chromosome and acts as a global regulator for the expression of a wide variety of genes. These functions are correlated with both its DNA-binding and oligomerization properties. We have identified the minimal dimerization domain of H-NS, a 46 amino acid–long N-terminal fragment, and determined its structure using heteronuclear NMR spectroscopy. The highly intertwined structure of the dimer, reminiscent of a handshake, defines a new structural fold, which may offer a possibility for discriminating prokaryotic from eukaryotic proteins in drug design. Using mutational analysis, we also show that this N-terminal domain actively contributes to DNA binding, conversely to the current paradigm. Together, our data allows us to propose a model for the action of full length H-NS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Oligomeric state of H-NS(1–46).
Figure 2: NMR structure of H-NS(1–46).
Figure 3: The handshake fold.
Figure 4: A conserved domain contributing to DNA-binding.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Hommais, F. et al. Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS. Mol. Microbiol. 40, 20–36 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Tanaka, K., Muramatsu, S., Yamada, H. & Mizuno, T. Systematic characterization of curved DNA segments randomly cloned from Escherichia coli and their functional significance. Mol. Gen. Genet. 226, 367–376 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Yamada, H., Yoshida, T., Tanaka, K., Sasakawa, C. & Mizuno, T. Molecular analysis of the Escherichia coli hns gene encoding a DNA-binding protein, which preferentially recognizes curved DNA sequences. Mol. Gen. Genet. 230, 332–336 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Rimsky, S., Zuber, F., Buckle, M. & Buc, H. A molecular mechanism for the repression of transcription by the H-NS protein. Mol. Microbiol. 42, 1311–1323 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Tupper, A.E. et al. The chromatin-associated protein H-NS alters DNA topology in vitro. EMBO J. 13, 258–268 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Falconi, M., Colonna, B., Prosseda, G., Micheli, G. & Gualerzi, C.O. Thermoregulation of Shigella and Escherichia coli EIEC pathogenicity. A temperature-dependent structural transition of DNA modulates accessibility of virF promoter to transcriptional repressor H-NS. EMBO J. 17, 7033–7043 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jordi, B.J. & Higgins, C.F. The downstream regulatory element of the proU operon of Salmonella typhimurium inhibits open complex formation by RNA polymerase at a distance. J. Biol. Chem. 275, 12123–12128 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Williams, R.M., Rimsky, S. & Buc, H. Probing the structure, function, and interactions of the Escherichia coli H-NS and StpA proteins by using dominant negative derivatives. J. Bacteriol. 178, 4335–4343 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ueguchi, C., Suzuki, T., Yoshida, T., Tanaka, K. & Mizuno, T. Systematic mutational analysis revealing the functional domain organization of Escherichia coli nucleoid protein H-NS. J. Mol. Biol. 263, 149–162 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Badaut, C. et al. The degree of oligomerisation of the H-NS nucleoid structuring protein is related to specific binding to DNA. J. Biol. Chem. 277, 41657–41666 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Shindo, H. et al. Solution structure of the DNA binding domain of a nucleoid-associated protein, H-NS, from Escherichia coli. FEBS Lett. 360, 125–131 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Smyth, C.P. et al. Oligomerization of the chromatin-structuring protein H-NS. Mol. Microbiol. 36, 962–972 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Spassky, A. & Buc, H.C. Physico-chemical properties of a DNA binding protein: Escherichia coli factor H1. Eur. J. Biochem. 81, 79–90 (1977).

    Article  CAS  PubMed  Google Scholar 

  14. Falconi, M., Gualtieri, M.T., La Teana, A., Losso, M.A. & Pon, C.L. Proteins from the prokaryotic nucleoid: primary and quaternary structure of the 15-kD Escherichia coli DNA binding protein H-NS. Mol. Microbiol. 2, 323–329 (1988).

    Article  CAS  PubMed  Google Scholar 

  15. Ceschini, S. et al. Multimeric self-assembly equilibria involving the histone-like protein H-NS. A thermodynamic study. J. Biol. Chem. 275, 729–734 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Ueguchi, C., Suzuki, T., Yoshida, T., Tanaka, K. & Mizuno, T. Systematic mutational analysis revealing the functional domain organization of Escherichia coli nucleoid protein H-NS. J. Mol. Biol. 263, 149–162 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Renzoni, D. et al. Structural characterization of the N-terminal oligomerization domain of the bacterial chromatin-structuring protein, H-NS. J. Mol. Biol. 306, 1127–1137 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Holm, L. & Sanders, C. DALI. Nucleic Acids Res. 25, 231–234 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jacquet, M., Cukier-Kahn, R., Pla, J. & Gros, F. A thermostable protein factor acting on in vitro DNA transcription. Biochem. Biophys. Res. Commun. 45, 1597–1607 (1971).

    Article  CAS  PubMed  Google Scholar 

  20. Shindo, H. et al. Identification of the DNA binding surface of H-NS protein from Escherichia coli by heteronuclear NMR spectroscopy. FEBS Lett. 455, 63–639 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Schroder, O., Tippner, D. & Wagner, R. Toward the three-dimensional structure of the Escherichia coli DNA-binding protein H-NS: a CD and fluorescence study. Biochem. Biophys. Res. Commun. 282, 219–227 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Rastinejad, F., Perlmann, T., Evans, R.M. & Sigler, P.B. Structural determinants of nuclear receptor assembly on DNA direct repeats. Nature 375, 203–211 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Williams, R.M. & Rimsky, S. Molecular aspects of the E. coli nucleoid protein, H-NS: a central controller of gene regulatory networks. FEMS Microbiol. Lett. 156, 175–185 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor; 1989).

    Google Scholar 

  25. Aumelas, A. et al. Synthesis and solution structure of the antimicrobial peptide protegrin-1. Eur. J. Biochem. 237, 575–583 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Beechem, J.M., Gratton, E., Ameloot, M.A., Knutson, J.R. & Brand, L. The global analysis of fluorescence intensity and anisotropy decay data: second-generation theory and programs. in Fluorescence Spectroscopy: Principles and Techniques, Vol. 2 (ed. Lakowicz, J.R.) 241–301 (Plenum Publishing, New York; 1991).

    Google Scholar 

  27. Fernando, T. & Royer, C. Role of protein–protein interactions in the regulation of the transcription by trp repressor investigated by fluorescence spectroscopy. Biochemistry 31, 3429–3441 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Pons, J.L., Malliavin, T. & Delsuc, M. Gifa V4: a complete package for NMR data-set processing. J. Biomol. NMR 8, 445–452 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Ikura, M. & Bax, A. Isotope-filtered 2D NMR of a protein-peptide complex: study of a skeletal muscle myosin light chain kinase fragment bound to calmodulin. J. Am. Chem. Soc. 114, 2433–2440 (1992).

    Article  CAS  Google Scholar 

  30. Brunger, A. X-PLOR (Version 3.1): a system for X-ray crystallography and NMR. (Yale University Press, New Haven; 1992).

  31. Nilges, M., Macias, M.J., O'Donoghue, S.I. & Oschkinat, H. Automated NOESY interpretation with ambiguous distance restraints: the refined NMR solution structure of the pleckstrin homology domain from β-spectrin. J. Mol. Biol. 269, 408–422 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Kraulis, P. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  33. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.P. Simore is greatly acknowledged for his help with the 800 NMR spectrometer; H. Buc, for constant support and advice; and M. Buckle, for numerous invaluable suggestions and critical reading of this manuscript. This work was supported by a grant from the Programme de Recherche en Biologie Fondamentale en Microbiologie et Maladies infectieuses, a doctoral fellowship grant (V.B.) from the MNERT and a EEC-TMR grant (M.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Kochoyan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bloch, V., Yang, Y., Margeat, E. et al. The H-NS dimerization domain defines a new fold contributing to DNA recognition. Nat Struct Mol Biol 10, 212–218 (2003). https://doi.org/10.1038/nsb904

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb904

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing