Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy

A Corrigendum to this article was published on 01 December 2003

Abstract

Aminoacyl-tRNAs (aa-tRNAs) are delivered to the ribosome as part of the ternary complex of aa-tRNA, elongation factor Tu (EF-Tu) and GTP. Here, we present a cryo-electron microscopy (cryo-EM) study, at a resolution of 9 Å, showing that during the incorporation of the aa-tRNA into the 70S ribosome of Escherichia coli, the flexibility of aa-tRNA allows the initial codon recognition and its accommodation into the ribosomal A site. In addition, a conformational change observed in the GTPase-associated center (GAC) of the ribosomal 50S subunit may provide the mechanism by which the ribosome promotes a relative movement of the aa-tRNA with respect to EF-Tu. This relative rearrangement seems to facilitate codon recognition by the incoming aa-tRNA, and to provide the codon-anticodon recognition-dependent signal for the GTPase activity of EF-Tu. From these new findings we propose a mechanism that can explain the sequence of events during the decoding of mRNA on the ribosome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cryo-EM maps showing the incorporation of the aa-tRNA into the ribosomal A site.
Figure 2: Topology of the decoding site.
Figure 3: Ternary complex stalled with kirromycin.
Figure 4: Model of A/T site tRNA and its interaction with ribosomal LH69.
Figure 5: Conformational change of the GAC of the 50S subunit upon interaction of the ternary complex with the ribosome.
Figure 6: Coupling of the conformational change of the GAC with the movement of aa-tRNA.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Rodnina, M.V., Pape, T., Fricke, R., Kuhn, L. & Wintermeyer, W. Initial binding of the elongation factor Tu·GTP·aminoacyl-tRNA complex preceding codon recognition on the ribosome. J. Biol. Chem. 271, 646–652 (1996).

    CAS  PubMed  Google Scholar 

  2. Berchtold, H. et al. Crystal structure of active elongation factor Tu reveals major domain rearrangements. Nature 365, 126–132 (1993).

    CAS  PubMed  Google Scholar 

  3. Kjeldgaard, M., Nissen, P., Thirup, S. & Nyborg, J. The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation. Structure 1, 35–50 (1993).

    CAS  PubMed  Google Scholar 

  4. Dell, V.A., Miller, D.L. & Johnson, A.E. Effects of nucleotide- and aurodox-induced changes in elongation factor Tu conformation upon its interaction with aminoacyl-tRNA. A fluorescence study. Biochemistry 29, 1757–1763 (1990).

    CAS  PubMed  Google Scholar 

  5. Kaziro, Y. The role of guanosine-5′-triphosphate in polypeptide chain elongation. Biochim. Biophys. Acta 505, 95–127 (1978).

    CAS  PubMed  Google Scholar 

  6. Stark, H. et al. Visualization of elongation factor Tu on Escherichia coli ribosome. Nature 389, 403–406 (1997).

    CAS  PubMed  Google Scholar 

  7. Agrawal, R.K. et al. Visualization of tRNA movements on the Escherichia coli ribosome during the elongation cycle. J. Cell Biol. 150, 447–459 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Valle, M. et al. Cryo-EM reveals an active role for aminoacyl-tRNA in the accommodation process. EMBO J. 21, 3557–3567 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Stark, H. et al. Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complex. Nat. Struct. Biol. 9, 849–854 (2002).

    CAS  PubMed  Google Scholar 

  10. Mohr, D., Wintermeyer, W. & Rodnina, M.V. GTPase activation of elongation factors Tu and G on the ribosome. Biochemistry 41, 12520–12528 (2002).

    CAS  PubMed  Google Scholar 

  11. Rodnina, M.V. & Wintermeyer, W. Fidelity of aminoacyl-tRNA selection on the ribosome: kinetic and structural mechanism. Annu. Rev. Biochem. 70, 415–435 (2001).

    CAS  PubMed  Google Scholar 

  12. Thompson, R.C. & Stone, P.J. Proofreading of the codon-anticodon interaction on ribosomes. Proc. Natl. Acad. Sci. USA 74, 198–202 (1977).

    CAS  PubMed  Google Scholar 

  13. Ruusala, T., Ehrenberg, M. & Kurland, C.G. Is there proofreading during polypeptide synthesis? EMBO J. 1, 415–435 (1982).

    Google Scholar 

  14. Pape, T., Wintermeyer, W. & Rodnina, M.V. Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of E. coli ribosome. EMBO J. 17, 7490–7497 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Rodnina, M.V., Fricke, R. & Wintermeyer, W. Transient conformational states of aminoacyl-tRNA during ribosome binding catalyzed by elongation factor Tu. Biochemistry 33, 12267–12275 (1994).

    CAS  PubMed  Google Scholar 

  16. Rodnina, M.V., Fricke, R., Kohn, L. & Wintermeyer, W. Codon-dependent conformational change of elongation factor Tu preceding GTP hydrolysis on the ribosome. EMBO J. 14, 2613–2619 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Piepenburg, O. et al. Intact aminoacyl-tRNA is required to trigger GTP hydrolysis by elongation factor Tu on the ribosome. Biochemistry 39, 1734–1738 (2000).

    CAS  PubMed  Google Scholar 

  18. Wolf, H., Chinali, G. & Parmeggiani, A. Mechanism of the inhibition of protein synthesis by kirromycin. Eur. J. Biochem. 75, 67–75 (1977).

    CAS  PubMed  Google Scholar 

  19. Parmeggiani, A. & Stewart, G.W. Mechanism of action of kirromycin-like antibiotics. Annu. Rev. Microbiol. 39, 557–577 (1985).

    CAS  PubMed  Google Scholar 

  20. Wimberly, B. et al. Structure of the 30S ribosomal subunit. Nature 407, 327–339 (2000).

    CAS  PubMed  Google Scholar 

  21. Ogle, J.M. et al. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292, 897–902 (2001).

    CAS  PubMed  Google Scholar 

  22. Abel, K.M., Yoder, M.D., Hilgenfeld, R. & Jurnak, F. An α to β conformational switch in EF-Tu. Structure 4, 1153–1159 (1996).

    CAS  PubMed  Google Scholar 

  23. Polekhina, G. et al. Helix unwinding in the effector region of elongation factor EF-Tu-GDP. Structure 4, 1141–1151 (1996).

    CAS  PubMed  Google Scholar 

  24. Hilgenfeld, R., Mesters, J. & Hogg, T. Insights into the GTPase mechanism of EF-Tu from structural studies. In The Ribosome: Structure, Function, Antibiotics, and Cellular Interactions (eds. Garret, R.A. et al.) 347–357 (ASM Press, Washington, DC, 2000).

    Google Scholar 

  25. Vogeley, L., Palm, G.J., Mesters, J.R. & Hilgenfeld, R. Conformational change of elongation factor Tu (EF-Tu) induced by antibiotic binding. J. Biol. Chem. 276, 17149–17155 (2001).

    CAS  PubMed  Google Scholar 

  26. Ban, N., Nissen, P., Hansen, J., Moore, P.B. & Steitz, T.A. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289, 905–920 (2000).

    CAS  PubMed  Google Scholar 

  27. Moazed, D., Robertson, J.M. & Noller, H.F. Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S rRNA. Nature 334, 362–364 (1988).

    CAS  PubMed  Google Scholar 

  28. Hausner, T.P., Atmadja, J. & Nierhaus, K.H. Evidence that the G2661 region of 23S rRNA is located at the ribosomal binding sites of both elongation factors. Biochimie 69, 911–923 (1987).

    CAS  PubMed  Google Scholar 

  29. Swart, G.W.M. & Parmeggiani, A. Effects of the mutation glycine-222→aspartic acid on the functions of elongation factor Tu. Biochemistry 26, 2047–2054 (1987).

    CAS  PubMed  Google Scholar 

  30. Vorstenbosch, E., Pape, T., Rodnina, M.V., Kraal, B. & Wintermeyer, W. The G222 mutation in elongation factor Tu inhibits the codon-induced conformational changes leading to GTPase activation on the ribosome. EMBO J. 15, 6766–6774 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Robertus, J.D. et al. Structure of yeast phenylananine tRNA at 3 Å resolution. Nature 250, 546–551 (1974).

    CAS  PubMed  Google Scholar 

  32. Sussman, J.L., Holbrook, S.R., Warrant, R.W., Church, G.M. & Kim, S.H. Crystal structure of yeast phenylalanine transfer RNA. I. Crystallographic refinement. Science 123, 607–630 (1978).

    CAS  Google Scholar 

  33. Harvey, S.C., Prabhakaran, M., Mao, B. & McCammon, J.A. Phenylalanine transfer RNA: molecular dynamics simulations. Science 223, 1189–1191 (1984).

    CAS  PubMed  Google Scholar 

  34. O'Connor, M. & Dahlberg, A.E. The involvement of two distinct regions of 23S ribosomal RNA in tRNA selection. J. Mol. Biol. 254, 838–847 (1995).

    CAS  PubMed  Google Scholar 

  35. Hirsh, D. Tryptophan transfer RNA as the UGA suppressor. J. Mol. Biol. 58, 439–458 (1971).

    CAS  PubMed  Google Scholar 

  36. Yarus, M. & Smith, D. tRNA on the ribosome: a Waggle theory. In tRNA: Structure, Biosynthesis, and Function (eds. Söll, D. & RajBahandary, U.) 443–468 (American Society for Microbiology, Washington, DC, 1995).

    Google Scholar 

  37. Hausner, T.P., Atmadja, J. & Nierhaus, K.H. Evidence that the G2661 region of 23S rRNA is located at the ribosomal binding sites of both elongation factors. Biochimie 69, 911–923 (1987).

    CAS  PubMed  Google Scholar 

  38. Wriggers, W., Agrawal, R.K., Drew, D.L., McCammon, A. & Frank, J. Domains motions of EF-G bound to the ribosome: insights from a hand-shaking between multi-resolution structures. Biophys. J. 79, 1670–1678 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wimberly, B.T., Guymon, R., McCutcheon, J.P., White, S.W. & Ramakrishnan, V. A detailed view of a ribosomal active site: the structure of the L11-RNA complex. Cell 97, 491–502 (1999).

    CAS  PubMed  Google Scholar 

  40. Vazquez, D. Inhibitors of Protein Synthesis (Springer, New York, 1979).

    Google Scholar 

  41. Saarma, U., Remme, J., Ehrenberg, M. & Bilgin, N. An A to U transversion at position 1067 of 23S rRNA from Escherichia coli impairs EF-Tu and EF-G function. J. Mol. Biol. 272, 327–335 (1997).

    CAS  PubMed  Google Scholar 

  42. O'Connor, M. & Dahlberg, A.E. The involvement of two distinct regions of 23S ribosomal RNA in tRNA selection. J. Mol. Biol. 254, 838–847 (1995).

    CAS  PubMed  Google Scholar 

  43. Zavialov, A.V., Buckingham, R.H. & Ehrenberg, M. A posttermination ribosomal complex is the guanine exchange factor for peptide release factor RF3. Cell 107, 1–20. (2001).

    Google Scholar 

  44. Rosenthal, P. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single particle electron cryomicroscopy. J. Mol. Biol., in press.

  45. Jones, T.A., Zhou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991).

    CAS  Google Scholar 

  46. Cornell, W.D. et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Yarus for a discussion and helpful suggestions and M. Watters for assistance with the illustrations. This work was supported by the Howard Hughes Medical Institute (J.F.), by grants from the US National Institutes of Health (J.F. and S.C.H.) and the US National Science Foundation (J.F.), by the Swedish Foundation for Strategic Research and the Swedish Research Council (A.V.Z. and M.E.), by an Ole Romer research grant from the Danish Research Council and the EMBO Young Investigator Program (P.N.) and by a scholarship from Novo Nordisk/Novozymes (R.N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Frank.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1 (PDF 1565 kb)

Supplementary Video 1.

Accommodation process on the 70S ribosome.By alternating between cryoEM maps of (i)the 70S ribosome with the stalled ternary complex (70S ·fMet-tRNA fMet ·Phe-tRNA Phe ·EF-Tu ·GDP ·kir)and (ii)the complex bearing the accommodated A-site tRNA (70S ·tRNA fMet ·MP-tRNA Phe),the dynamic transition during the incorporation of the aa-tRNA can be observed.In the rendering,the segmented and differently colored volumes allow the ribosomal subunits (large subunit in blue,small subunit in yellow)and the tRNAs in P (green)and E sites (orange)to be distinguished. The A/T-and A-site tRNAs are depicted in the same color (magenta),so that the trajectory of the tRNA can be more easily followed during the accommodation. (MOV 2802 kb)

Supplementary Video 2.

tRNA movement and conformational change during accommodation. (MOV 3670 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valle, M., Zavialov, A., Li, W. et al. Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy. Nat Struct Mol Biol 10, 899–906 (2003). https://doi.org/10.1038/nsb1003

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1003

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing