Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural determinants of SecB recognition by SecA in bacterial protein translocation

Abstract

SecB is a bacterial chaperone involved in directing pre-protein to the translocation pathway by its specific interaction with the peripheral membrane ATPase SecA. The SecB-binding site on SecA is located at its C terminus and consists of a stretch of highly conserved residues. The crystal structure of SecB in complex with the C-terminal 27 amino acids of SecA from Haemophilus influenzae shows that the SecA peptide is structured as a CCCH zinc-binding motif. One SecB tetramer is bound by two SecA peptides, and the interface involves primarily salt bridges and hydrogen bonding interactions. The structure explains the importance of the zinc-binding motif and conserved residues at the C terminus of SecA in its high-affinity binding with SecB. It also suggests a model of SecB-SecA interaction and its implication for the mechanism of pre-protein transfer in bacterial protein translocation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of the SecB–SecAc complex.
Figure 2: The structure of SecAc.
Figure 3: Specific interactions between SecB and SecAc.
Figure 4: A model of the SecB–SecA molecular complex.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Fekkes, P. & Driessen, A.J. Protein targeting to the bacterial cytoplasmic membrane. Microbiol. Mol. Biol. Rev. 63, 161–173 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Driessen, A.J., Manting, E.H. & van der Does, C. The structural basis of protein targeting and translocation in bacteria. Nat. Struct. Biol. 8, 492–498 (2001).

    Article  CAS  Google Scholar 

  3. Kim, J. & Kendall, D.A. Sec-dependent protein export and the involvement of the molecular chaperone SecB. Cell Stress Chaperones 5, 267–275 (2000).

    Article  CAS  Google Scholar 

  4. Kumamoto, C.A. Escherichia coli SecB protein associates with exported protein precursors in vivo. Proc. Natl. Acad. Sci. USA 86, 5320–5324 (1989).

    Article  CAS  Google Scholar 

  5. Randall, L.L. Peptide binding by chaperone SecB: implications for recognition of nonnative structure. Science 257, 241–245 (1992).

    Article  CAS  Google Scholar 

  6. Fekkes, P. et al. Preprotein transfer to the Escherichia coli translocase requires the co-operative binding of SecB and the signal sequence to SecA. Mol. Microbiol. 29, 1179–1190 (1998).

    Article  CAS  Google Scholar 

  7. Fekkes, P., van der Does, C. & Driessen, A.J. The molecular chaperone SecB is released from the carboxy-terminus of SecA during initiation of precursor protein translocation. EMBO J. 16, 6105–6113 (1997).

    Article  CAS  Google Scholar 

  8. Economou, A. & Wickner, W. SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell 78, 835–843 (1994).

    Article  CAS  Google Scholar 

  9. Miller, A., Wang, L. & Kendall, D.A. SecB modulates the nucleotide-bound state of SecA and stimulates ATPase activity. Biochemistry 41, 5325–5332 (2002).

    Article  CAS  Google Scholar 

  10. Woodbury, R.L. et al. Complexes between protein export chaperone SecB and SecA. Evidence for separate sites on SecA providing binding energy and regulatory interactions. J. Biol. Chem. 275, 24191–24198 (2000).

    Article  CAS  Google Scholar 

  11. Fekkes, P., de Wit, J.G., Boorsma, A., Friesen, R.H. & Driessen, A.J. Zinc stabilizes the SecB binding site of SecA. Biochemistry 38, 5111–5116 (1999).

    Article  CAS  Google Scholar 

  12. Driessen, A.J., Fekkes, P. & van der Wolk, J.P. The Sec system. Curr. Opin. Microbiol. 1, 216–222 (1998).

    Article  CAS  Google Scholar 

  13. Kimsey, H.H., Dagarag, M.D. & Kumamoto, C.A. Diverse effects of mutation on the activity of the Escherichia coli export chaperone SecB. J. Biol. Chem. 270, 22831–22835 (1995).

    Article  CAS  Google Scholar 

  14. Xu, Z., Knafels, J.D. & Yoshino, K. Crystal structure of the bacterial protein export chaperone SecB. Nat. Struct. Biol. 7, 1172–1177 (2000).

    Article  CAS  Google Scholar 

  15. Hunt, J.F. et al. Nucleotide control of interdomain interactions in the conformational reaction cycle of SecA. Science 297, 2018–2026 (2002).

    Article  CAS  Google Scholar 

  16. Sharma, V. et al. Crystal structure of Mycobacterium tuberculosis SecA, a preprotein translocating ATPase. Proc. Natl. Acad. Sci. USA 100, 2243–2248 (2003).

    Article  CAS  Google Scholar 

  17. Rajapandi, T. & Oliver, D. Carboxy-terminal region of Escherichia coli SecA ATPase is important to promote its protein translocation activity in vivo. Biochem. Biophys. Res. Commun. 200, 1477–1183 (1994).

    Article  CAS  Google Scholar 

  18. Harding, M.M. Geometry of metal-ligand interactions in proteins. Acta Crystallogr. D 57, 401–411 (2001).

    Article  CAS  Google Scholar 

  19. Laity, J.H., Lee, B.M. & Wright, P.E. Zinc finger proteins: new insights into structural and functional diversity. Curr. Opin. Struct. Biol. 11, 39–46 (2001).

    Article  CAS  Google Scholar 

  20. Mackereth, C.D., Arrowsmith, C.H., Edwards, A.M. & McIntosh, L.P. Zinc-bundle structure of the essential RNA polymerase subunit RPB10 from Methanobacterium thermoautotrophicum. Proc. Natl. Acad. Sci. USA 97, 6316–6321 (2000).

    Article  CAS  Google Scholar 

  21. Evans, J.C. et al. Betaine-homocysteine methyltransferase: zinc in a distorted barrel. Structure 10, 1159–1171 (2002).

    Article  CAS  Google Scholar 

  22. Zhou, Z.S., Peariso, K., Penner-Hahn, J.E. & Matthews, R.G. Identification of the zinc ligands in cobalamin-independent methionine synthase (MetE) from Escherichia coli. Biochemistry 38, 15915–15926 (1999).

    Article  CAS  Google Scholar 

  23. Fleischmann, R.D. et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512 (1995).

    Article  CAS  Google Scholar 

  24. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  25. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  26. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  27. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  28. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  Google Scholar 

  29. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Stuckey for maintaining the X-ray facility at the University of Michigan Medical School, K. Yoshino for making the GST fusion construct, D. Peisach for help in data collection and crystallography, K. Brister for access and help at the Advanced Photon Source BioCARs beamline 14-BM-C, and C. Fierke and R. Matthews for critically reading the manuscript. This work was supported by a US National Institutes of Health grant to Z.X. and the University of Michigan Biological Scholar Program. Z.X. is a Pew scholar in Biomedical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaohui Xu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, J., Xu, Z. Structural determinants of SecB recognition by SecA in bacterial protein translocation. Nat Struct Mol Biol 10, 942–947 (2003). https://doi.org/10.1038/nsb980

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb980

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing