Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Context and conformation dictate function of a transcription antitermination switch

Abstract

In bacteriophage l, transcription elongation is regulated by the N protein, which binds a nascent mRNA hairpin (termed boxB) and enables RNA polymerase to read through distal terminators. We have examined the structure, energetics and in vivo function of a number of N–boxB complexes derived from in vitro protein selection. Trp18 fully stacks on the RNA loop in the wild-type structure, and can become partially or completely unstacked when the sequence context is changed three or four residues away, resulting in a recognition interface in which the best binding residues depend on the sequence context. Notably, in vivo antitermination activity correlates with the presence of a stacked aromatic residue at position 18, but not with N–boxB binding affinity. Our work demonstrates that RNA polymerase responds to subtle conformational changes in cis-acting regulatory complexes and that approximation of components is not sufficient to generate a fully functional transcription switch.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and function of the N protein.
Figure 2: Relative stability of N peptide–boxB RNA complexes that differ at positions 14, 15 and 18.
Figure 3: Structure and folding characteristics of N–boxB complexes as detected by NMR and fluorescence spectroscopy.
Figure 4: Antitermination activities of N mutants, as determined using E. coli strains carrying a two-plasmid reporter system22.
Figure 5: Energetic and structural correlation of antitermination activity.
Figure 6: Characteristics of N-boxB-NusA interactions.

Similar content being viewed by others

References

  1. von Hippel, P.H. An integrated model of the transcription complex in elongation, termination, and editing. Science 281, 660–665 (1998).

    Article  CAS  Google Scholar 

  2. Yarnell, W.S. & Roberts, J.W. Mechanism of intrinsic transcription termination and antitermination. Science 284, 611–615 (1999).

    Article  CAS  Google Scholar 

  3. Uptain, S.M., Kane, C.M. & Chamberlin, M.J. Basic mechanisms of transcript elongation and its regulation. Annu. Rev. Biochem. 66, 117–172 (1997).

    Article  CAS  Google Scholar 

  4. Zorio, D.A. & Bentley, D.L. Transcription elongation: the 'Foggy' is lifting... Curr. Biol. 11, R144–R146 (2001).

    Article  CAS  Google Scholar 

  5. Maniatis, T. & Reed, R. An extensive network of coupling among gene expression machines. Nature 416, 499–506 (2002).

    Article  CAS  Google Scholar 

  6. Roberts, J.W. Termination factor for RNA synthesis. Nature 224, 1168–1174 (1969).

    Article  CAS  Google Scholar 

  7. Greenblatt, J. Positive control of endolysin synthesis in vitro by the gene N protein of phage λ. Proc. Natl. Acad. Sci. USA 69, 3606–3610 (1972).

    Article  CAS  Google Scholar 

  8. Salstrom, J.S. & Szybalski, W. Coliphage λnutL: a unique class of mutants defective in the site of gene N product utilization for antitermination of leftward transcription. J. Mol. Biol. 124, 195–221 (1978).

    Article  CAS  Google Scholar 

  9. Greenblatt, J., Nodwell, J.R. & Mason, S.W. Transcriptional antitermination. Nature 364, 401–406 (1993).

    Article  CAS  Google Scholar 

  10. Friedman, D.I. & Court, D.L. Transcription antitermination: the lambda paradigm updated. Mol. Microbiol. 18, 191–200 (1995).

    Article  CAS  Google Scholar 

  11. Weisberg, R.A. & Gottesman, M.E. Processive antitermination. J. Bacteriol. 181, 359–367 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Van Gilst, M.R. & von Hippel, P.H. Assembly of the N-dependent antitermination complex of phage lambda: NusA and RNA bind independently to different unfolded domains of the N protein. J. Mol. Biol. 274, 160–173 (1997).

    Article  CAS  Google Scholar 

  13. Mogridge, J., Mah, T.F. & Greenblatt, J. A protein-RNA interaction network facilitates the template-independent cooperative assembly on RNA polymerase of a stable antitermination complex containing the lambda N protein. Genes Dev. 9, 2831–2845 (1995).

    Article  CAS  Google Scholar 

  14. Zhou, Y. et al. Interactions of an Arg-rich region of transcription elongation protein NusA with NUT RNA: implications for the order of assembly of the lambda N antitermination complex in vivo. J. Mol. Biol. 310, 33–49 (2001).

    Article  CAS  Google Scholar 

  15. Murakami, K.S., Masuda, S., Campbell, E.A., Muzzin, O. & Darst, S.A. Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex. Science 296, 1285–1290 (2002).

    Article  CAS  Google Scholar 

  16. Gusarov, I. & Nudler, E. Control of intrinsic transcription termination by N and NusA: the basic mechanisms. Cell 107, 437–449 (2001).

    Article  CAS  Google Scholar 

  17. Legault, P., Li, J., Mogridge, J., Kay, L.E. & Greenblatt, J. NMR structure of the bacteriophage lambda N peptide/boxB RNA complex: recognition of a GNRA fold by an arginine-rich motif. Cell 93, 289–299 (1998).

    Article  CAS  Google Scholar 

  18. Scharpf, M. et al. Antitermination in bacteriophage lambda. The structure of the N36 peptide-boxB RNA complex. Eur. J. Biochem. 267, 2397–2408 (2000).

    Article  CAS  Google Scholar 

  19. Su, L. et al. RNA recognition by a bent alpha-helix regulates transcriptional antitermination in phage lambda. Biochemistry 36, 12722–12732 (1997).

    Article  CAS  Google Scholar 

  20. Jucker, F.M., Heus, H.A., Yip, P.F., Moors, E.H. & Pardi, A. A network of heterogeneous hydrogen bonds in GNRA tetraloops. J. Mol. Biol. 264, 968–980 (1996).

    Article  CAS  Google Scholar 

  21. Heus, H.A. & Pardi, A. Structural features that give rise to the unusual stability of RNA hairpins containing GNRA loops. Science 253, 191–194 (1991).

    Article  CAS  Google Scholar 

  22. Franklin, N.C. Clustered arginine residues of bacteriophage lambda N protein are essential to antitermination of transcription, but their locale cannot compensate for boxB loop defects. J. Mol. Biol. 231, 343–360 (1993).

    Article  CAS  Google Scholar 

  23. Barrick, J.E., Takahashi, T.T., Ren, J., Xia, T. & Roberts, R.W. Large libraries reveal diverse solutions to an RNA recognition problem. Proc. Natl. Acad. Sci. USA 98, 12374–12378 (2001).

    Article  CAS  Google Scholar 

  24. Barrick, J.E., Takahashi, T.T., Balakin, A. & Roberts, R.W. Selection of RNA-binding peptides using mRNA-peptide fusions. Methods 23, 287–293 (2001).

    Article  CAS  Google Scholar 

  25. Barrick, J.E. & Roberts, R.W. Sequence analysis of an artificial family of RNA-binding peptides. Protein Sci. 11, 2688–2696 (2002).

    Article  CAS  Google Scholar 

  26. Xia, T. et al. The RNA-protein complex: direct probing of the interfacial recognition dynamics and its correlation with biological functions. Proc. Natl. Acad. Sci. USA 100, 8119–8123 (2003).

    Article  CAS  Google Scholar 

  27. Cai, Z. et al. Solution structure of P22 transcriptional antitermination N peptide–boxB RNA complex. Nat. Struct. Biol. 5, 203–212 (1998).

    Article  CAS  Google Scholar 

  28. Harada, K., Martin, S.S. & Frankel, A.D. Selection of RNA-binding peptides in vivo. Nature 380, 175–179 (1996).

    Article  CAS  Google Scholar 

  29. Doelling, J.H. & Franklin, N.C. Effects of all single base substitutions in the loop of boxB on antitermination of transcription by bacteriophage lambda's N protein. Nucleic Acids Res. 17, 5565–5577 (1989).

    Article  CAS  Google Scholar 

  30. Das, A. et al. Components of multiprotein-RNA complex that controls transcription elongation in Escherichia coli phage lambda. Methods Enzymol. 274, 374–402 (1996).

    Article  CAS  Google Scholar 

  31. Friedman, D.I. In The Bacteriophages vol. 2 (ed. Calendar, R.) 263–318 (Plenum, New York, 1988).

    Book  Google Scholar 

  32. Whalen, W., Ghosh, B. & Das, A. NusA protein is necessary and sufficient in vitro for phage lambda N gene product to suppress a rho-independent terminator placed downstream of nutL. Proc. Natl. Acad. Sci. USA 85, 2494–2498 (1988).

    Article  CAS  Google Scholar 

  33. Gill, S.C., Weitzel, S.E. & von Hippel, P.H. Escherichia coli sigma 70 and NusA proteins. I. Binding interactions with core RNA polymerase in solution and within the transcription complex. J. Mol. Biol. 220, 307–324 (1991).

    Article  CAS  Google Scholar 

  34. Mason, S.W., Li, J. & Greenblatt, J. Host factor requirements for processive antitermination of transcription and suppression of pausing by the N protein of bacteriophage lambda. J. Biol. Chem. 267, 19418–19426 (1992).

    CAS  PubMed  Google Scholar 

  35. Rees, W.A., Weitzel, S.E., Yager, T.D., Das, A. & von Hippel, P.H. Bacteriophage lambda N protein alone can induce transcription antitermination in vitro. Proc. Natl. Acad. Sci. USA 93, 342–346 (1996).

    Article  CAS  Google Scholar 

  36. Chattopadhyay, S., Garcia-Mena, J., DeVito, J., Wolska, K. & Das, A. Bipartite function of a small RNA hairpin in transcription antitermination in bacteriophage lambda. Proc. Natl. Acad. Sci. USA 92, 4061–4065 (1995).

    Article  CAS  Google Scholar 

  37. Mogridge, J. et al. Independent ligand-induced folding of the RNA-binding domain and two functionally distinct antitermination regions in the phage lambda N protein. Mol. Cell. 1, 265–275 (1998).

    Article  CAS  Google Scholar 

  38. Barik, S., Ghosh, B., Whalen, W., Lazinski, D. & Das, A. An antitermination protein engages the elongating transcription apparatus at a promoter-proximal recognition site. Cell 50, 885–899 (1987).

    Article  CAS  Google Scholar 

  39. Mason, S.W. & Greenblatt, J. Assembly of transcription elongation complexes containing the N protein of phage lambda and the Escherichia coli elongation factors NusA, NusB, NusG, and S10. Genes Dev. 5, 1504–1512 (1991).

    Article  CAS  Google Scholar 

  40. Toulokhonov, I., Artsimovitch, I. & Landick, R. Allosteric control of RNA polymerase by a site that contacts nascent RNA hairpins. Science 292, 730–733 (2001).

    Article  CAS  Google Scholar 

  41. Marciniak, R.A., Calnan, B.J., Frankel, A.D. & Sharp, P.A. HIV-1 Tat protein trans-activates transcription in vitro. Cell 63, 791–802 (1990).

    Article  CAS  Google Scholar 

  42. Richter, S., Ping, Y.H. & Rana, T.M. TAR RNA loop: a scaffold for the assembly of a regulatory switch in HIV replication. Proc. Natl. Acad. Sci. USA 99, 7928–7933 (2002).

    Article  CAS  Google Scholar 

  43. Steinmetz, E.J. & Brow, D.A. Repression of gene expression by an exogenous sequence element acting in concert with a heterogeneous nuclear ribonucleoprotein-like protein, Nrd1, and the putative helicase Sen1. Mol. Cell. Biol. 16, 6993–7003 (1996).

    Article  CAS  Google Scholar 

  44. Steinmetz, E.J. & Brow, D.A. Control of pre-mRNA accumulation by the essential yeast protein Nrd1 requires high-affinity transcript binding and a domain implicated in RNA polymerase II association. Proc. Natl. Acad. Sci. USA 95, 6699–6704 (1998).

    Article  CAS  Google Scholar 

  45. Steinmetz, E.J., Conrad, N.K., Brow, D.A. & Corden, J.L. RNA-binding protein Nrd1 directs poly(A)-independent 3′-end formation of RNA polymerase II transcripts. Nature 413, 327–331 (2001).

    Article  CAS  Google Scholar 

  46. Austin, R.J., Xia, T., Ren, J., Takahashi, T.T. & Roberts, R.W. Designed arginine-rich RNA-binding peptides with picomolar affinity. J. Am. Chem. Soc. 124, 10966–10967 (2002).

    Article  CAS  Google Scholar 

  47. Milligan, J.F., Groebe, D.R., Witherell, G.W. & Uhlenbeck, O.C. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 15, 8783–8798 (1987).

    Article  CAS  Google Scholar 

  48. Rees, W.A., Weitzel, S.E., Das, A. & von Hippel, P.H. Regulation of the elongation-termination decision at intrinsic terminators by antitermination protein N of phage lambda. J. Mol. Biol. 273, 797–813 (1997).

    Article  CAS  Google Scholar 

  49. Peled-Zehavi, H., Smith, C.A., Harada, K. & Frankel, A.D. Screening RNA-binding libraries by transcriptional antitermination in bacteria. Methods Enzymol. 318, 297–308 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Franklin for the gifts of the two-plasmid N expressor–β-galactosidase reporter constructs, plasmid pMS7 and N–tester strain, P. von Hippel for the gift of pET-N1 plasmid and N protein, P. Legault for sharing the coordinates of the λ phage N peptide–boxB RNA complex and J.H. Richards, C.S. Parker and members of the Roberts laboratory for helpful comments on the manuscript. This work was supported by grants from US National Science Foundation (NSF) and National Institutes of Health (NIH) to R.W.R. R.W.R. is an Alfred P. Sloan research fellow, A.F. is an ACS postdoctoral fellow and T.T.T. was supported by an NIH training grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard W Roberts.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, T., Frankel, A., Takahashi, T. et al. Context and conformation dictate function of a transcription antitermination switch. Nat Struct Mol Biol 10, 812–819 (2003). https://doi.org/10.1038/nsb983

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb983

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing