Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evolutionarily conserved networks of residues mediate allosteric communication in proteins

A Corrigendum to this article was published on 01 March 2003

Abstract

A fundamental goal in cellular signaling is to understand allosteric communication, the process by which signals originating at one site in a protein propagate reliably to affect distant functional sites. The general principles of protein structure that underlie this process remain unknown. Here, we describe a sequence-based statistical method for quantitatively mapping the global network of amino acid interactions in a protein. Application of this method for three structurally and functionally distinct protein families (G protein–coupled receptors, the chymotrypsin class of serine proteases and hemoglobins) reveals a surprisingly simple architecture for amino acid interactions in each protein family: a small subset of residues forms physically connected networks that link distant functional sites in the tertiary structure. Although small in number, residues comprising the network show excellent correlation with the large body of mechanistic data available for each family. The data suggest that evolutionarily conserved sparse networks of amino acid interactions represent structural motifs for allosteric communication in proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A statistical perturbation method for measuring interactions between residues in proteins.
Figure 2: Mapping statistical coupling for the Tyr296 perturbation in GPCRs (Fig. 1g) onto the structure of a representative member of the protein family, bovine rhodopsin.
Figure 3: Cluster analysis of statistical coupling in the GPCR family.
Figure 4: A physically connected network of coupling between residues in the GPCR family.
Figure 6: Structural mapping of the two co-evolving clusters of residues in the chymotrypsin family of serine proteases.
Figure 5: A global analysis of statistical coupling in the chymotrypsin-family of serine proteases.
Figure 7: A global analysis of statistical coupling in the hemoglobin family.
Figure 8: Structural mapping of the two clusters of coupled residues in the hemoglobin family.

Similar content being viewed by others

References

  1. Gether, U. Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr. Rev. 21, 90–113 (2000).

    Article  CAS  Google Scholar 

  2. Menon, S.T., Han, M. & Sakmar, T.P. Rhodopsin: structural basis of molecular physiology. Physiol. Rev. 81, 1659–1688 (2001).

    Article  CAS  Google Scholar 

  3. Hedstrom, L., Szilagyi, L. & Rutter, W.J. Converting trypsin to chymotrypsin: the role of surface loops. Science 255, 1249–1253 (1992).

    Article  CAS  Google Scholar 

  4. Hedstrom, L. Trypsin: a case study in the structural determinants of enzyme specificity. Biol. Chem. 377, 465–470 (1996).

    CAS  PubMed  Google Scholar 

  5. Patten, P.A. et al. The immunological evolution of catalysis. Science 271, 1086–1091 (1996).

    Article  CAS  Google Scholar 

  6. Perutz, M.F., Wilkinson, A.J., Paoli, M. & Dodson, G.G. The stereochemical mechanism of the cooperative effects in hemoglobin revisited. Annu. Rev. Biophys. Biomol. Struct. 27, 1–34 (1998).

    Article  CAS  Google Scholar 

  7. Perutz, M.F., Fermi, G., Luisi, B., Shaanan, B. & Liddington, R.C. Stereochemistry of cooperative mechanisms in hemoglobin. Cold Spring Harb. Symp. Quant. Biol. 52, 555–565 (1987).

    Article  CAS  Google Scholar 

  8. Perutz, M.F. Stereochemistry of cooperative effects in haemoglobin. Nature 228, 726–739 (1970).

    Article  CAS  Google Scholar 

  9. Paoli, M., Liddington, R., Tame, J., Wilkinson, A. & Dodson, G. Crystal structure of T state haemoglobin with oxygen bound at all four haems. J. Mol. Biol. 256, 775–792 (1996).

    Article  CAS  Google Scholar 

  10. Perona, J.J., Hedstrom, L., Rutter, W.J. & Fletterick, R.J. Structural origins of substrate discrimination in trypsin and chymotrypsin. Biochemistry 34, 1489–1499 (1995).

    Article  CAS  Google Scholar 

  11. Williams, D.C. Jr., Benjamin, D.C., Poljak, R.J. & Rule, G.S. Global changes in amide hydrogen exchange rates for a protein antigen in complex with three different antibodies. J. Mol. Biol. 257, 866–876 (1996).

    Article  CAS  Google Scholar 

  12. Schreiber, G. & Fersht, A.R. Energetics of protein-protein interactions: analysis of the barnase-barstar interface by single mutations and double mutant cycles. J. Mol. Biol. 248, 478–486 (1995).

    CAS  PubMed  Google Scholar 

  13. Hidalgo, P. & MacKinnon, R. Revealing the architecture of a K+ channel pore through mutant cycles with a peptide inhibitor. Science 268, 307–310 (1995).

    Article  CAS  Google Scholar 

  14. Carter, P.J., Winter, G., Wilkinson, A.J. & Fersht, A.R. The use of double mutants to detect structural changes in the active site of the tyrosyl-tRNA synthetase (Bacillus stearothermophilus). Cell 38, 835–840 (1984).

    Article  CAS  Google Scholar 

  15. Lockless, S.W. & Ranganathan, R. Evolutionarily conserved pathways of energetic connectivity in protein families. Science 286, 295–299 (1999).

    Article  CAS  Google Scholar 

  16. Lichtarge, O., Bourne, H.R. & Cohen, F.E. An evolutionary trace method defines binding surfaces common to protein families. J. Mol. Biol. 257, 342–358 (1996).

    Article  CAS  Google Scholar 

  17. Marcotte, E.M. et al. Detecting protein function and protein-protein interactions from genome sequences. Science 285, 751–753 (1999).

    Article  CAS  Google Scholar 

  18. Pellegrini, M., Marcotte, E.M., Thompson, M.J., Eisenberg, D. & Yeates, T.O. Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc. Natl. Acad. Sci. USA 96, 4285–4288 (1999).

    Article  CAS  Google Scholar 

  19. Ballesteros, J.A., Shi, L. & Javitch, J.A. Structural mimicry in G protein-coupled receptors: implications of the high-resolution structure of rhodopsin for structure-function analysis of rhodopsin-like receptors. Mol. Pharmacol. 60, 1–19 (2001).

    Article  CAS  Google Scholar 

  20. Saraceni-Richards, C.A. & Levy, S.B. Second-site suppressor mutations of inactivating substitutions at Gly247 of the tetracycline efflux protein, Tet(B). J. Bacteriol. 182, 6514–6516 (2000).

    Article  CAS  Google Scholar 

  21. Minor, D.L. Jr., Masseling, S.J., Jan, Y.N. & Jan, L.Y. Transmembrane structure of an inwardly rectifying potassium channel. Cell 96, 879–891 (1999).

    Article  CAS  Google Scholar 

  22. Cain, S.M., Matzke, E.A. & Brooker, R.J. The conserved motif in hydrophilic loop 2/3 and loop 8/9 of the lactose permease of Escherichia coli. Analysis of suppressor mutations. J. Membr. Biol. 176, 159–168 (2000).

    Article  CAS  Google Scholar 

  23. Zhang, H., Skinner, M.M., Sandberg, W.S., Wang, A.H. & Terwilliger, T.C. Context dependence of mutational effects in a protein: the crystal structures of the V35I, I47V and V35I/I47V gene V protein core mutants. J. Mol. Biol. 259, 148–159 (1996).

    Article  CAS  Google Scholar 

  24. Baldwin, E., Xu, J., Hajiseyedjavadi, O., Baase, W.A. & Matthews, B.W. Thermodynamic and structural compensation in 'size-switch' core repacking variants of bacteriophage T4 lysozyme. J. Mol. Biol. 259, 542–559 (1996).

    Article  CAS  Google Scholar 

  25. Neher, E. How frequent are correlated changes in families of protein sequences? Proc. Natl. Acad. Sci. USA 91, 98–102 (1994).

    Article  CAS  Google Scholar 

  26. Nakayama, T.A. & Khorana, H.G. Orientation of retinal in bovine rhodopsin determined by cross-linking using a photoactivatable analog of 11-cis-retinal. J. Biol. Chem. 265, 15762–15769 (1990).

    CAS  PubMed  Google Scholar 

  27. Palczewski, K. et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739–745 (2000).

    Article  CAS  Google Scholar 

  28. Robinson, P.R., Cohen, G.B., Zhukovsky, E.A. & Oprian, D.D. Constitutively active mutants of rhodopsin. Neuron 9, 719–725 (1992).

    Article  CAS  Google Scholar 

  29. Porter, J.E., Hwa, J. & Perez, D.M. Activation of the α1b-adrenergic receptor is initiated by disruption of an interhelical salt bridge constraint. J. Biol. Chem. 271, 28318–28323 (1996).

    Article  CAS  Google Scholar 

  30. Yano, K., Kohn, L.D., Saji, M., Okuno, A. & Cutler, G.B. Jr. Phe576 plays an important role in the secondary structure and intracellular signaling of the human luteinizing hormone/chorionic gonadotropin receptor. J. Clin. Endocrinol. Metab. 82, 2586–2591 (1997).

    Article  CAS  Google Scholar 

  31. Andres, A., Kosoy, A., Garriga, P. & Manyosa, J. Mutations at position 125 in transmembrane helix III of rhodopsin affect the structure and signalling of the receptor. Eur. J. Biochem. 268, 5696–5704 (2001).

    Article  CAS  Google Scholar 

  32. Garriga, P., Liu, X. & Khorana, H.G. Structure and function in rhodopsin: correct folding and misfolding in point mutants at and in proximity to the site of the retinitis pigmentosa mutation Leu-125→Arg in the transmembrane helix C. Proc. Natl. Acad. Sci. USA 93, 4560–4564 (1996).

    Article  CAS  Google Scholar 

  33. Okada, T., Ernst, O.P., Palczewski, K. & Hofmann, K.P. Activation of rhodopsin: new insights from structural and biochemical studies. Trends Biochem. Sci. 26, 318–324 (2001).

    Article  CAS  Google Scholar 

  34. Han, M., Smith, S.O. & Sakmar, T.P. Constitutive activation of opsin by mutation of methionine 257 on transmembrane helix 6. Biochemistry 37, 8253–8261 (1998).

    Article  CAS  Google Scholar 

  35. Gripentrog, J.M., Jesaitis, A.J. & Miettinen, H.M. A single amino acid substitution (N297A) in the conserved NPXXY sequence of the human N-formyl peptide receptor results in inhibition of desensitization and endocytosis, and a dose-dependent shift in p42/44 mitogen-activated protein kinase activation and chemotaxis. Biochem. J. 352, 399–407 (2000).

    Article  CAS  Google Scholar 

  36. Meng, E.C. & Bourne, H.R. Receptor activation: what does the rhodopsin structure tell us? Trends Pharmacol. Sci. 22, 587–593 (2001).

    Article  CAS  Google Scholar 

  37. Farrens, D.L., Altenbach, C., Yang, K., Hubbell, W.L. & Khorana, H.G. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274, 768–770 (1996).

    Article  CAS  Google Scholar 

  38. Altenbach, C., Klein-Seetharaman, J., Cai, K., Khorana, H.G. & Hubbell, W.L. Structure and function in rhodopsin: mapping light-dependent changes in distance between residue 316 in helix 8 and residues in the sequence 60–75, covering the cytoplasmic end of helices TM1 and TM2 and their connection loop CL1. Biochemistry 40, 15493–15500 (2001).

    Article  CAS  Google Scholar 

  39. Altenbach, C., Cai, K., Klein-Seetharaman, J., Khorana, H.G. & Hubbell, W.L. Structure and function in rhodopsin: mapping light-dependent changes in distance between residue 65 in helix TM1 and residues in the sequence 306–319 at the cytoplasmic end of helix TM7 and in helix H8. Biochemistry 40, 15483–15492 (2001).

    Article  CAS  Google Scholar 

  40. Dunham, T.D. & Farrens, D.L. Conformational changes in rhodopsin. Movement of helix f detected by site-specific chemical labeling and fluorescence spectroscopy. J. Biol. Chem. 274, 1683–1690 (1999).

    Article  CAS  Google Scholar 

  41. Cai, K. et al. Single-cysteine substitution mutants at amino acid positions 306-321 in rhodopsin, the sequence between the cytoplasmic end of helix VII and the palmitoylation sites: sulfhydryl reactivity and transducin activation reveal a tertiary structure. Biochemistry 38, 7925–7930 (1999).

    Article  CAS  Google Scholar 

  42. Altenbach, C., Cai, K., Khorana, H.G. & Hubbell, W.L. Structural features and light-dependent changes in the sequence 306–322 extending from helix VII to the palmitoylation sites in rhodopsin: a site-directed spin-labeling study. Biochemistry 38, 7931–7937 (1999).

    Article  CAS  Google Scholar 

  43. Fahmy, K. & Sakmar, T.P. Regulation of the rhodopsin-transducin interaction by a highly conserved carboxylic acid group. Biochemistry 32, 7229–7236 (1993).

    Article  CAS  Google Scholar 

  44. Franke, R.R., Konig, B., Sakmar, T.P., Khorana, H.G. & Hofmann, K.P. Rhodopsin mutants that bind but fail to activate transducin. Science 250, 123–125 (1990).

    Article  CAS  Google Scholar 

  45. Franke, R.R., Sakmar, T.P., Graham, R.M. & Khorana, H.G. Structure and function in rhodopsin. Studies of the interaction between the rhodopsin cytoplasmic domain and transducin. J. Biol. Chem. 267, 14767–14774 (1992).

    CAS  PubMed  Google Scholar 

  46. Kim, J.M., Altenbach, C., Thurmond, R.L., Khorana, H.G. & Hubbell, W.L. Structure and function in rhodopsin: rhodopsin mutants with a neutral amino acid at E134 have a partially activated conformation in the dark state. Proc. Natl. Acad. Sci. USA 94, 14273–14278 (1997).

    Article  CAS  Google Scholar 

  47. Getz, G., Levine, E. & Domany, E. Coupled two-way clustering analysis of gene microarray data. Proc. Natl. Acad. Sci. USA 97, 12079–12084 (2000).

    Article  CAS  Google Scholar 

  48. Luque, I., Leavitt, S.A. & Freire, E. The linkage between protein folding and functional cooperativity: two sides of the same coin? Annu. Rev. Biophys. Biomol. Struct. 31, 235–256 (2002).

    Article  CAS  Google Scholar 

  49. Scheidig, A.J., Hynes, T.R., Pelletier, L.A., Wells, J.A. & Kossiakoff, A.A. Crystal structures of bovine chymotrypsin and trypsin complexed to the inhibitor domain of Alzheimer's amyloid β-protein precursos (APPI) and basic pancreatic trypsin inhibitor (BPTI): engineering of inhibitors with altered specificities. Protein Sci. 6, 1806 (1997).

  50. Graf, L. et al. Electrostatic complementarity within the substrate-binding pocket of trypsin. Proc. Natl. Acad. Sc.i USA 85, 4961–4965 (1988).

    Article  CAS  Google Scholar 

  51. Hedstrom, L., Perona, J.J. & Rutter, W.J. Converting trypsin to chymotrypsin: residue 172 is a substrate specificity determinant. Biochemistry 33, 8757–8763 (1994).

    Article  CAS  Google Scholar 

  52. Szabo, E., Bocskei, Z., Naray-Szabo, G. & Graf, L. The three-dimensional structure of Asp189Ser trypsin provides evidence for an inherent structural plasticity of the protease. Eur. J. Biochem. 263, 20–26 (1999).

    Article  CAS  Google Scholar 

  53. Mace, J.E. & Agard, D.A. Kinetic and structural characterization of mutations of glycine 216 in α-lytic protease: a new target for engineering substrate specificity. J. Mol. Biol. 254, 720–736 (1995).

    Article  CAS  Google Scholar 

  54. Davis, J.H. & Agard, D.A. Relationship between enzyme specificity and the backbone dynamics of free and inhibited α-lytic protease. Biochemistry 37, 7696–7707 (1998).

    Article  CAS  Google Scholar 

  55. Liddington, R., Derewenda, Z., Dodson, E., Hubbard, R. & Dodson, G. High resolution crystal structures and comparisons of T-state deoxyhaemoglobin and two liganded T-state haemoglobins: T(α-oxy)haemoglobin and T(met)haemoglobin. J. Mol. Biol. 228, 551–579 (1992).

    Article  CAS  Google Scholar 

  56. Stevens, S.Y., Sanker, S., Kent, C. & Zuiderweg, E.R. Delineation of the allosteric mechanism of a cytidylyltransferase exhibiting negative cooperativity. Nat. Struct. Biol. 8, 947–952 (2001).

    Article  CAS  Google Scholar 

  57. Nicholson, L.K. et al. Flexibility and function in HIV-1 protease. Nat. Struct. Biol. 2, 274–280 (1995).

    Article  CAS  Google Scholar 

  58. Osborne, M.J., Schnell, J., Benkovic, S.J., Dyson, H.J. & Wright, P.E. Backbone dynamics in dihydrofolate reductase complexes: role of loop flexibility in the catalytic mechanism. Biochemistry 40, 9846–9859 (2001).

    Article  CAS  Google Scholar 

  59. Eisenmesser, E.Z., Bosco, D.A., Akke, M. & Kern, D. Enzyme dynamics during catalysis. Science 295, 1520–1523 (2002).

    Article  CAS  Google Scholar 

  60. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

  61. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  Google Scholar 

  62. Beukers, M.W., Kristiansen, I., IJzerman, A.P. & Edvardsen, I. TinyGRAP database: a bioinformatics tool to mine G-protein-coupled receptor mutant data. Trends Pharmacol. Sci. 20, 475–477 (1999).

    Article  CAS  Google Scholar 

  63. Horn, F. et al. GPCRDB: an information system for G protein-coupled receptors. Nucleic Acids Res. 26, 275–279 (1998).

    Article  CAS  Google Scholar 

  64. Doolittle, R., Abelson, J.N. & Simon, M.I. Computer Methods for Macromolecular Sequence Analysis (Academic Press, San Diego; 1996).

    Google Scholar 

  65. Nicholls, A., Sharp, K. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  66. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed andschematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  67. Bacon, D. & Anderson, W.F. A fast algorithm for rendering space-filling molecule pictures. J. Mol. Graph. 6, 219–220 (1988).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Albanesi, M. Brown, A. Gilman, and members of the Ranganathan lab for critical reading of the manuscript. This work was partially supported by a grant from the Robert A. Welch Foundation to R.R., who is also a recipient of the Burroughs-Wellcome Fund New Investigator Award in the Basic Pharmacological Sciences and the Mallinckrodt Scholar Award. M.A.W. is a Research Associate and R.R. is an Associate Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rama Ranganathan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Süel, G., Lockless, S., Wall, M. et al. Evolutionarily conserved networks of residues mediate allosteric communication in proteins. Nat Struct Mol Biol 10, 59–69 (2003). https://doi.org/10.1038/nsb881

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb881

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing