Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Correlated intramolecular motions and diffuse x–ray scattering in lysozyme

Abstract

Correlated motions of protein atoms are of biological significance in processes involving ligand binding, conformational change and information transmission. X–ray scattering patterns from protein crystals contain diffuse scattering that originates from correlated displacements of atoms. Here we present experimental data on diffuse X–ray scattering from lysozyme crystals. We show that the diffuse scattering is similar in form to scattering derived from molecular dynamics simulation and normal mode analysis of the isolated protein, the normal modes giving the closest agreement with experiment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cowley, J.M. Diffraction physics. (North-Holland, Amsterdam, 1975).

    Google Scholar 

  2. Doucet, J. & Benoit, J.P. Molecular dynamics studied by analysis of the X-ray diffuse scattering from lysozyme crystal. Nature 325, 643–646 (1987).

    Article  CAS  Google Scholar 

  3. Caspar, D.L.D., Clarage, J., Salunke, D.M. & Clarage, M. Liquid-like movements in crystalline insulin. Nature 332, 659–662 (1988).

    Article  CAS  Google Scholar 

  4. Clarage, J.B., Clarage, M.S., Phillips, W.C., Sweet, R.M. & Caspar, D.L.D. Correlations of atomic movements in lysozyme Crystals. Prof. Struc. Funct. Genet. 12, 145–147 (1992).

    Article  CAS  Google Scholar 

  5. Brooks, C.L., Karplus, M. & Pettitt, M. Proteins: a theoretical perspective of dynamics, structure and thermodynamics. Adv. Chem. Phys. 71 (eds Prigogine and Rice) (John Wiley, 1988).

    Chapter  Google Scholar 

  6. McCammon, J.A. & Harvey, S.C. Dynamics of proteins and nucleic acids. (Cambridge University Press, 1987).

    Book  Google Scholar 

  7. Frauenfelder, H., Sligar, S.G. & Wolynes, P.G. The energy landscapes and motions of proteins. Science 254, 1598–1603 (1991).

    Article  CAS  Google Scholar 

  8. Rasmussen, B.F., Stock, A.M., Ringe, D. & Petsko, G. Crystalline ribonuclease A loses function below the dynamical transition. Nature 357, 423–424 (1992).

    Article  CAS  Google Scholar 

  9. Vos, M.H., Rappaport, F., Lambry, J.C., Breton, J. & Martin, J.L. Visualization of coherent nuclear motion in a membrane protein by femtosecond spectroscopy. Nature 363, 320–325 (1993).

    Article  CAS  Google Scholar 

  10. Ferrand, M., Dianoux, A.J., Petry, W. & Zaccai, G. Thermal motions and function of bacteriorhodopsin in purple membranes: effects of temperature and hydration studied by neutron scattering. Proc. natn. Acad. Sci. U.S.A. 90 9668–9672 (1993).

    Article  CAS  Google Scholar 

  11. Baldwin, J.M. & Chothia, C. Haemoglobin: the structural changes related to ligand binding and its allosteric mechanism. J. molec. Biol. 129, 175–220 (1979).

    Article  CAS  Google Scholar 

  12. Kantrowitz, E.R. & Lipscomb, W.N. Protein normal mode dynamics: trypsin inihibitor, crambin, ribonuclease and lysozyme. Science 241, 669–674 (1988).

    Article  CAS  Google Scholar 

  13. McCammon, J.A., Gelin, B.R., Karplus, M. & Wolynes, P.G. The hinge-bending mode in lysozyme. Nature 262, 325–326. (1976).

    Article  CAS  Google Scholar 

  14. Nishikawa, T. & Go, N. Normal modes of vibration in pancreatic trypsin inhibitor and its mechanical property. Prot. Struc. Funct. Genet. 2, 308–329 (1987).

    Article  CAS  Google Scholar 

  15. Levitt, M. Sander & Stern, P.S. Escherichia Coli. aspartate transcarbamylase: the relation between structure and function. J. molec. Biol. 181, 423–447 (1985).

    Article  CAS  Google Scholar 

  16. Doster, W., Cusack, S. & Petry, W. Dynamical transition in myoglobin revealed by inelastic neutron scattering. Nature 337, 754–756 (1989).

    Article  CAS  Google Scholar 

  17. Knapp, E.W., Fischer, S.F. & Parak, F., Dynamics from Moessbauer spectra. The temperature dependence. J. chem. Phys. 78(7), 4701–4711 (1983).

    Article  CAS  Google Scholar 

  18. Smith, J.C., Protein Dynamics: Comparison of simulations with inelastic neutron scattering experiments. Q. Rev. Biophys. 24, 227–291 (1991).

    Article  CAS  Google Scholar 

  19. Smith, J.C., Kuczera, K. & Karplus, M. Temperature dependence of myoglobin dynamics: neutron spectra calculated from a molecular dynamics simulation of myoglobin. Proc. natn. Acad. Sci. U.S.A. 87 1601–1605 (1990).

    Article  CAS  Google Scholar 

  20. Hochstrasser, R.M. & Negus, D.K. Picosecond fluoresence decay of tryptophans in myoglobin. Proc. natn. Acad. Sci. U.S.A. 81, 4399–4403 (1984).

    Article  CAS  Google Scholar 

  21. Dobson, C.M. & Karplus, M., Motion in proteins: nuclear magnetic resonance measurements and dynamic simulations. Meth. Ezymol. 131, 362–389 (1986).

    Article  CAS  Google Scholar 

  22. Guinier, A. Théorie et Technique de la radiocristallographie. (Dunod, Paris, 1956).

    Google Scholar 

  23. Furois-Corbin, S., Smith, J.C. & Kneller, G.R. Picosecond timescale rigid helix and side-chain motions in myoglobin. Prot. Struc. Funct. Genet. 16, 141–154 (1993).

    Article  CAS  Google Scholar 

  24. Kolatkar, A.R., Clarage, J.B. & Phillips, G.N. Diffuse scattering from crystals of yeast initiator. The Rigaku Journal 9, 4–8 (1992).

    Google Scholar 

  25. Jollès, P. & Berthou, J. High temperature crystallisation of lysozyme: an example of phase transition. FEBS LETT. 23, 21–23 (1972).

    Article  Google Scholar 

  26. Fourme, R., Dhez, P., Benoit, J.P., Kahn, R., Dubuisson, J.M., Besson, P. & Frouin, J. Bent crystal, bent multilayer optics on a multipole wiggler line for an X-ray diffractometer with an imaging plate detector. Rev. Sci. Instrum. U.S.A. 63B, 982–987 (1992).

    Article  Google Scholar 

  27. Brooks, B., Bruccoleri, R., Olafson, B., States, D., Swaminathan, S. & Karplus, M. CHARMM: A program for macromolecular energy, minimization and dynamics calculations. J. Comp. Chem. 4, 187–217 (1983).

    Article  CAS  Google Scholar 

  28. Berthou, J., Lifchitz, A., Artymiuk, P. & Jollès, P . An X-ray study of the physiological-temperature form of hen egg-white lysozyme at 2 Å resolution. Proc. R. Soc. Lond. B217, 471–489 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faure, P., Micu, A., Pérahia, D. et al. Correlated intramolecular motions and diffuse x–ray scattering in lysozyme. Nat Struct Mol Biol 1, 124–128 (1994). https://doi.org/10.1038/nsb0294-124

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0294-124

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing