Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interactions within the yeast t-SNARE Sso1p that control SNARE complex assembly

Abstract

In the eukaryotic secretory and endocytic pathways, transport vesicles shuttle cargo among intracellular organelles and to and from the plasma membrane. Cargo delivery entails fusion of the transport vesicle with its target, a process thought to be mediated by membrane bridging SNARE protein complexes. Temporal and spatial control of intracellular trafficking depends in part on regulating the assembly of these complexes. In vitro, SNARE assembly is inhibited by the closed conformation adopted by the syntaxin family of SNAREs. To visualize this closed conformation directly, the X-ray crystal structure of a yeast syntaxin, Sso1p, has been determined and refined to 2.1 Å resolution. Mutants designed to destabilize the closed conformation exhibit accelerated rates of SNARE assembly. Our results provide insight into the mechanism of SNARE assembly and its intramolecular and intermolecular regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The N-terminal domain of Sso1p is required for cell viability.
Figure 2: The stability of Sso1p and the rate of binary SNARE complex assembly are inversely dependent on pH.
Figure 3: Sso1p structure.
Figure 4: Comparison between Sso1p and syntaxin–nSec1 structures.
Figure 5: Stereo views of buried waters and hydrophobic clusters in Sso1p.
Figure 6: Superposition of Sso1p and the neuronal SNARE core complex.
Figure 7: Mutagenic analysis of SNARE assembly.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Jahn, R. & Südhof, T.C. Membrane fusion and exocytosis. Annu. Rev. Biochem. 68, 863–911 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Weimbs, T., et al. A conserved domain is present in different families of vesicular fusion proteins: a new superfamily. Proc. Natl. Acad. Sci. USA 94, 3046–3051 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hanson, P.I., Otto, H., Barton, N. & Jahn, R. The N-ethylmaleimide-sensitive fusion protein and α-SNAP induce a conformational change in syntaxin. J. Biol. Chem. 270, 16955–16961 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Poirier, M.A., et al. The synaptic SNARE complex is a parallel four-stranded helical bundle. Nature Struct. Biol. 5, 765–769 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Sutton, R.B., Fasshauer, D., Jahn, R. & Brunger, A.T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 395, 347–353 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Katz, L., Hanson, P.I., Heuser, J.E. & Brennwald, P. Genetic and morphological analyses reveal a critical interaction between the C-termini of two SNARE proteins and a parallel four helical arrangement for the exocytic SNARE complex. EMBO J. 17, 6200–6209 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Weber, T., et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Bennett, M.K., Calakos, N. & Scheller, R.H. Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257, 255–259 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Fernandez, I., et al. Three-dimensional structure of an evolutionarily conserved N-terminal domain of syntaxin 1A. Cell 94, 841–849 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Misura, K.M.S., Scheller, R.H. & Weis, W.I. Three-dimensional structure of the neuronal–Sec1-syntaxin complex. Nature 404, 355–362 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Calakos, N., Bennett, M.K., Peterson, K.E. & Scheller, R.H. Protein-protein interactions contributing to the specificity of intracellular vesicular trafficking. Science 263, 1146–1149 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Nicholson, K.L., et al. Regulation of SNARE complex assembly by an N-terminal domain of the t-SNARE Sso1p. Nature Struct. Biol. 5, 793–802 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Fiebig, K.M., Rice, L.M., Pollock, E. & Brunger, A.T. Folding intermediates of SNARE complex assembly. Nature Struct. Biol. 6, 117–123 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Dulubova, I., et al. A conformational switch in syntaxin during exocytosis: role of munc18. EMBO J. 18, 4372–4382 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Scales, S.J., et al. SNAREs contribute to the specificity of membrane fusion. Neuron 26, 457–464 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Aalto, M.K., Ronne, H. & Keränen, S. Yeast syntaxins Sso1p and Sso2p belong to a family of related membrane proteins that function in vesicular transport. EMBO J. 12, 4095–4104 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Carr, C.M., Grote, E., Munson, M., Hughson, F.M. & Novick, P.J. Sec1p binds to SNARE complexes and concentrates at sites of secretion. J. Cell Biol. 146, 333–344 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Waters, M.G. & Hughson, F.M. Membrane tethering and fusion in the secretory and endocytic pathways. Traffic 1, 588–597 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Lerman, J.C., Robblee, J., Fairman, R. & Hughson, F.M. Structural analysis of the neuronal SNARE protein syntaxin-1A. Biochemistry 39, 8470–8479 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Carr, C.M. & Novick, P.J. Membrane fusion: changing partners. Nature 404, 347–349 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Parlati, F., et al. Rapid and efficient fusion of phospholipid vesicles by the alpha-helical core of a SNARE complex in the absence of an N-terminal regulatory domain. Proc. Natl. Acad. Sci. USA 96, 12565–12570 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Betz, A., Okamoto, M., Benseler, F. & Brose, N. Direct interaction of the rat unc-13 homologue Munc13-1 with the N terminus of syntaxin. J. Biol. Chem. 272, 2520–2526 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Rossi, G., Salminen, A., Rice, L.M., Brünger, A.T. & Brennwald, P. Analysis of a yeast SNARE complex reveals remarkable similarity to the neuronal SNARE complex and a novel function for the C terminus of the SNAP-25 homolog, Sec9. J. Biol. Chem. 272, 16610–16617 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Rice, L.M., Brennwald, P. & Brünger, A.T. Formation of a yeast SNARE complex is accompanied by significant structural changes. FEBS Lett. 415, 49–55 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Brennwald, P., et al. Sec9 is a SNAP-25-like component of a yeast SNARE complex that may be the effector of Sec4 function in exocytosis. Cell 79, 245–258 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Finger, F.P. & Novick, P. Spatial regulation of exocytosis: lessons from yeast. J. Cell Biol. 142, 609–612 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fasshauer, D., Eliason, W.K., Brunger, A.T. & Jahn, R. Identification of a minimal core of the synaptic SNARE complex sufficient for reversible assembly and disassembly. Biochemistry 37, 10354–10362 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Fasshauer, D., Bruns, D., Shen, B., Jahn, R. & Brünger, A.T. A structural change occurs upon binding of syntaxin to SNAP-25. J. Biol. Chem. 272, 4582–4590 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Yang, B., Steegmaier, M., Gonzalez, L.C. & Scheller, R.H. nSec1 binds a closed conformation of syntaxin1A. J. Cell Biol. 148, 247–252 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fasshauer, D., Antonin, W., Margittai, M., Pabst, S. & Jahn, R. Mixed and non-cognate SNARE complexes. J. Biol. Chem. 274, 15440–15446 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Novick, P., Field, C. & Schekman, R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21, 205–215 (1980).

    Article  CAS  PubMed  Google Scholar 

  32. Novick, P. & Zerial, M. The diversity of Rab proteins in vesicle transport. Curr. Opin. Cell Biol. 9, 496–504 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Terbush, D.R., Maurice, T., Roth, D. & Novick, P. The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J. 15, 6483–6494 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang, B., et al. SNARE interactions are not selective: implications for membrane fusion specificity. J. Biol. Chem. 274, 5649–5653 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Tsui, M.M. & Banfield, D.K. Yeast Golgi SNARE interactions are promiscuous. J. Cell Sci. 113, 145–152 (2000).

    CAS  PubMed  Google Scholar 

  36. Guide to Native PAGE. Technical Literature #1822 (Bio-Rad Laboratories, Hercules, California; 1993).

  37. Winzeler, E.A., et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Christianson, T.W., Sikorski, R.S., Dante, M., Shero, J.H. & Hieter, P. Multifunctional yeast high-copy-number shuttle vectors. Gene 110, 119–122 (1992).

    Article  CAS  PubMed  Google Scholar 

  39. Sikorski, R.S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Leahy, D.J., Erickson, H.P., Aukhil, I., Joshi, P. & Hendrickson, W.A. Crystallization of a fragment of human fibronectin: introduction of methionine by site-directed mutagenesis to allow phasing via selenomethionine. Proteins 19, 48–54 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Otwinowski, Z. & Minor, W. Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1998).

    Article  Google Scholar 

  42. Terwilliger, T.C. & Berendzen, J. Automated structure solution for MIR and MAD. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Collaborative Computational Project Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  44. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  45. Brunger, A.T., et al. Crystallography and NMR System (CNS): a new software system for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Kraulis, P. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 924–950 (1991).

    Article  Google Scholar 

  47. Esnouf, R.M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. Model. 15, 132–134 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Carson, M. Ribbon models of macromolecules. J. Mol. Graph. 5, 103–106 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Carey, C. Carr, L. Cavanaugh, E. Grote, R. Miller, S. Miller, P. Novick, B. Reilly, M. Rose, Y. Shi, and G. Waters for gifts of materials and for helpful advice. We are particularly grateful to J. Lerman for guidance in designing mutants and assistance in X-ray data collection. This work was supported by the American Heart Association (M.M.), the Searle Scholars and Beckman Young Investigators programs (F.M.H.), and the N.I.H. (M.M. and F.M.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick M. Hughson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munson, M., Chen, X., Cocina, A. et al. Interactions within the yeast t-SNARE Sso1p that control SNARE complex assembly. Nat Struct Mol Biol 7, 894–902 (2000). https://doi.org/10.1038/79659

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/79659

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing