Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Testicular and epididymal ADAMs: expression and function during fertilization

Abstract

The disintegrin and metalloprotease domain-containing protein (ADAM) family of multidomain membrane proteins comprises at least 34 members in mammals. More than half of these proteins are expressed specifically or predominantly in mammalian testes and epididymis, implying their prominence in male reproduction. These reproductive ADAMs can be classified into three phylogenetic groups; designated I, II, and III. Each group displays remarkably contrasting features. Group I contains 11 ADAMs expressed in the testis. The genes that encode these proteins lack introns in their coding sequences and most of the proteins are processed into prodomain-lacking forms in mature sperm. Five ADAMs—encoded by genes with multiple exons and introns—belong to phylogenetic group II. These ADAMs are also expressed in testicular germ cells, but both prodomains and metalloprotease domains are lacking in mature sperm. Two phylogenetic group III ADAMs are synthesized in the epididymis; one of which is secreted and transferred to the sperm surface. Some of these sperm ADAMs are assembled into potentially functional complexes, including ADAM1B-ADAM2, ADAM2-ADAM3-ADAM4, ADAM2-ADAM3-ADAM5, and ADAM2-ADAM3-ADAM6. It has been suggested that ADAM2 and ADAM3 have roles in sperm–egg interactions. Mouse knockout studies have revealed that the ADAM2-ADAM3 complex is critical for in vivo sperm migratory function in the female reproductive tract.

Key Points

  • Male reproductive ADAMs are divided phylogenetically into three major groups; group I (intronless testicular genes), group II (testicular genes with multiple exons and introns), and group III (epididymal genes)

  • Most of the testicular ADAM proteins are synthesized in spermatogenic cells as precursors and processed to mature forms that are present on the surface of mature sperm

  • Some of the ADAMs that are present in sperm form complexes, such as ADAM1B-ADAM2, ADAM2-ADAM3-ADAM4, ADAM2-ADAM3-ADAM5, and ADAM2-ADAM3-ADAM6

  • Sperm ADAM complexes containing ADAM2 and ADAM3 are active during sperm–egg interactions in vitro and promote sperm migration from the uterus to the oviduct in mice

  • The ability to select sperm with optimal localization patterns and expression levels of ADAMs or develop agonists that promote ADAM function could lead to improved IVF outcomes

  • Continuing studies of sperm ADAMs should provide important information regarding the molecular mechanisms underlying mammalian fertilization

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phylogeny, tissue expression, genomic organization, and metalloprotease activity of the mammalian ADAM family members.
Figure 2: Localization, complex formation, and processing of reproductive ADAM proteins in mice.
Figure 3: The expression levels of ADAMs in testicular spermatogenic cells and mature sperm of Adam-knockout mice.64,66,74,76,77,78,79
Figure 4: Schematic model summarizing the role of individual mouse ADAMs in sperm function during the various stages of fertilization.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Cho, C. in The ADAM family of proteases (ed. Hooper, N. M. & Lendeckel, U.) 239–259 (Springer, Dordrecht, 2005).

    Book  Google Scholar 

  2. Edwards, D. R., Handsley, M. M. & Pennington, C. J. The ADAM metalloproteinases. Mol. Aspects Med. 29, 258–289 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Primakoff, P. & Myls, D. G. The ADAM gene family: surface proteins with adhesion and protease activity. Trends Genet. 16, 83–87 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. White, J. M. ADAMs: modulators of cell-cell and cell-matrix interactions. Curr. Opin. Cell Biol. 15, 598–606 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Seals, D. F. & Courtneidge, S. A. The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev. 17, 7–30 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Blobel, C. P. ADAMs: key components in EGFR signalling and development. Nat. Rev. Mol. Cell Biol. 6, 32–43 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Klein, T. & Bischoff, R. Active metalloproteases of the A Disintegrin and Metalloprotease (ADAM) family: biological function and structure. J. Proteome Res. 10, 17–33 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Poindexter, K., Nelson, N., DuBose, R. F., Black, R. A. & Cerretti, D. P. The identification of seven metalloproteinase-disintegrin (ADAM) genes from genomic libraries. Gene 237, 61–70 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Choi, I. et al. Characterization and comparative genomic analysis of intronless Adams with testicular gene expression. Genomics 83, 636–646 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Yi, C. et al. Expression analysis of the Adam21 gene in mouse testis. Gene Expr. Patterns 10, 152–158 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Cho, C., Turner, L., Primakoff, P. & Myles, D. G. Genomic organization of the mouse fertilin beta gene that encodes an ADAM family protein active in sperm-egg fusion. Dev. Genet. 20, 320–328 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Choi, I. et al. Identification and characterization of ADAM32 with testis-predominant gene expression. Gene 304, 151–162 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Oh, J. et al. Molecular, biochemical, and cellular characterization of epididymal ADAMs, ADAM7 and ADAM28. Biochem. Biophys. Res. Commun. 331, 1374–1383 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Cho, C., Primakoff, P., White, J. M. & Myles, D. G. Chromosomal assignment of four testis-expressed mouse genes from a new family of transmembrane proteins (ADAMs) involved in cell-cell adhesion and fusion. Genomics 34, 413–417 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Nishimura, H. et al. The ADAM1a and ADAM1b genes, instead of the ADAM1 (fertilin alpha) gene, are localized on mouse chromosome 5. Gene 291, 67–76 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Bolcun, E., Rzymski, T., Nayernia, K. & Engel, W. ADAM family genes testase 2alpha and 2beta are chromosomally linked and simultaneously expressed in male germ cells. Mol. Reprod. Dev. 65, 19–22 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Adham, I. M. et al. Molecular cloning, chromosomal localization, and expression analysis of CYRN1 and CYRN2, two human genes coding for cyritestin, a sperm protein involved in gamete interaction. DNA Cell Biol. 17, 161–168 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Jury, J. A., Frayne, J. & Hall, L. The human fertilin alpha gene is non-functional: implications for its proposed role in fertilization. Biochem. J. 321, 577–581 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jury, J. A., Frayne, J. & Hall, L. Sequence analysis of a variety of primate fertilin alpha genes: evidence for non-functional genes in the gorilla and man. Mol. Reprod. Dev. 51, 92–97 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Waterston, R. H. et al. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Frayne, J. & Hall, L. The gene for the human tMDC I sperm surface protein is non-functional: implications for its proposed role in mammalian sperm-egg recognition. Biochem. J. 334, 171–176 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grzmil, P. et al. Human cyritestin genes (CYRN1 and CYRN2) are non-functional. Biochem. J. 357, 551–556 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Blobel, C. P. et al. A potential fusion peptide and an integrin ligand domain in a protein active in sperm-egg fusion. Nature 356, 248–252 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Wolfsberg, T. G. et al. The precursor region of a protein active in sperm-egg fusion contains a metalloprotease and a disintegrin domain: structural, functional, and evolutionary implications. Proc. Natl Acad. Sci. USA 90, 10783–10787 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Perry, A. C., Gichuhi, P. M., Jones, R. & Hall, L. Cloning and analysis of monkey fertilin reveals novel alpha subunit isoforms. Biochem. J. 307, 843–850 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wolfsberg, T. G. et al. ADAM, a widely distributed and developmentally regulated gene family encoding membrane proteins with a disintegrin and metalloprotease domain. Dev. Biol. 169, 378–383 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Hardy, C. M. & Holland, M. K. Cloning and expression of recombinant rabbit fertilin. Mol. Reprod. Dev. 45, 107–116 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. McLaughlin, E. A. et al. Cloning and sequence analysis of rat fertilin alpha and beta—developmental expression, processing and immunolocalization. Mol. Hum. Reprod. 3, 801–809 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Waters, S. I. & White, J. M. Biochemical and molecular characterization of bovine fertilin alpha and beta (ADAM 1 and ADAM 2): a candidate sperm-egg binding/fusion complex. Biol. Reprod. 56, 1245–1254 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Frayne, J., Jury, J. A., Barker, H. L. & Hall, L. Rat MDC family of proteins: sequence analysis, tissue distribution, and expression in prepubertal and adult rat testis. Mol. Reprod. Dev. 48, 159–167 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Hooft van Huijsduijnen, R. ADAM 20 and 21; two novel human testis-specific membrane metalloproteases with similarity to fertilin-alpha. Gene 206, 273–282 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Cerretti, D. P., DuBose, R. F., Black, R. A. & Nelson, N. Isolation of two novel metalloproteinase-disintegrin (ADAM) cDNAs that show testis-specific gene expression. Biochem. Biophys. Res. Commun. 263, 810–815 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Brachvogel, B. et al. Molecular cloning and expression analysis of a novel member of the Disintegrin and Metalloprotease-Domain (ADAM) family. Gene 288, 203–210 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Zhu, G. Z., Lin, Y., Myles, D. G. & Primakoff, P. Identification of four novel ADAMs with potential roles in spermatogenesis and fertilization. Gene 234, 227–237 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Liu, L. & Smith, J. W. Identification of ADAM 31: a protein expressed in Leydig cells and specialized epithelia. Endocrinology 141, 2033–2042 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Day, A. E., Quilter, C. R., Sargent, C. A. & Mileham, A. J. Chromosomal mapping, sequence and transcription analysis of the porcine fertilin beta gene (ADAM2). Anim. Genet. 34, 375–378 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Gupta, S. K., Alves, K., Palladino, L. O., Mark, G. E. & Hollis, G. F. Molecular cloning of the human fertilin beta subunit. Biochem. Biophys. Res. Commun. 224, 318–326 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Vidaeus, C. M. et al. Human fertilin beta: identification, characterization, and chromosomal mapping of an ADAM gene family member. Mol. Reprod. Dev. 46, 363–369 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Burkin, H. R., Burkin, D. J., Davey, P. M., Griffin, D. K. & Affara, N. A. Mapping, sequence, and expression analysis of the human fertilin beta gene (FTNB). Genomics 40, 190–192 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Perry, A. C., Jones, R., Barker, P. J. & Hall, L. A mammalian epididymal protein with remarkable sequence similarity to snake venom haemorrhagic peptides. Biochem. J. 286, 671–675 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cornwall, G. A. & Hsia, N. ADAM7, a member of the ADAM (a disintegrin and metalloprotease) gene family is specifically expressed in the mouse anterior pituitary and epididymis. Endocrinology 138, 4262–4272 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Lin, Y. C., Sun, G. H., Lee, Y. M., Guo, Y. W. & Liu, H. W. Cloning and characterization of a complementary DNA encoding a human epididymis-associated disintegrin and metalloprotease 7 protein. Biol. Reprod. 65, 944–950 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Jury, J. A., Perry, A. C. & Hall, L. Identification, sequence analysis and expression of transcripts encoding a putative metalloproteinase, eMDC II, in human and macaque epididymis. Mol. Hum. Reprod. 5, 1127–1134 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Howard, L., Maciewicz, R. A. & Blobel, C. P. Cloning and characterization of ADAM28: evidence for autocatalytic pro-domain removal and for cell surface localization of mature ADAM28. Biochem. J. 348, 21–27 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Haidl, I. D., Huber, G. & Eichmann, K. An ADAM family member with expression in thymic epithelial cells and related tissues. Gene 283, 163–170 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Howard, L., Zheng, Y., Horrocks, M., Maciewicz, R. A. & Blobel, C. Catalytic activity of ADAM28. FEBS Lett. 498, 82–86 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Evans, J. P., Kopf, G. S. & Schultz, R. M. Characterization of the binding of recombinant mouse sperm fertilin beta subunit to mouse eggs: evidence for adhesive activity via an egg beta1 integrin-mediated interaction. Dev. Biol. 187, 79–93 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Zhu, X., Bansal, N. P. & Evans, J. P. Identification of key functional amino acids of the mouse fertilin beta (ADAM2) disintegrin loop for cell-cell adhesion during fertilization. J. Biol. Chem. 275, 7677–7683 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Bigler, D. et al. Sequence-specific interaction between the disintegrin domain of mouse ADAM 2 (fertilin beta) and murine eggs. Role of the alpha(6) integrin subunit. J. Biol. Chem. 275, 11576–11584 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Takahashi, Y., Bigler, D., Ito, Y. & White, J. M. Sequence-specific interaction between the disintegrin domain of mouse ADAM 3 and murine eggs: role of beta1 integrin-associated proteins CD9, CD81, and CD98. Mol. Biol. Cell 12, 809–820 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tomczuk, M. et al. Role of multiple beta1 integrins in cell adhesion to the disintegrin domains of ADAMs 2 and 3. Exp. Cell Res. 290, 68–81 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Desiderio, U. V., Zhu, X. & Evans, J. P. ADAM2 interactions with mouse eggs and cell lines expressing alpha4/alpha9 (ITGA4/ITGA9) integrins: implications for integrin-based adhesion and fertilization. PLoS ONE 5, e13744 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Primakoff, P., Hyatt, H. & Tredick-Kline, J. Identification and purification of a sperm surface protein with a potential role in sperm-egg membrane fusion. J. Cell Biol. 104, 141–149 (1987).

    Article  CAS  PubMed  Google Scholar 

  54. Blobel, C. P., Myles, D. G., Primakoff, P. & White, J. M. Proteolytic processing of a protein involved in sperm-egg fusion correlates with acquisition of fertilization competence. J. Cell Biol. 111, 69–78 (1990).

    Article  CAS  PubMed  Google Scholar 

  55. Lum, L. & Blobel, C. P. Evidence for distinct serine protease activities with a potential role in processing the sperm protein fertilin. Dev. Biol. 191, 131–145 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Phelps, B. M., Koppel, D. E., Primakoff, P. & Myles, D. G. Evidence that proteolysis of the surface is an initial step in the mechanism of formation of sperm cell surface domains. J. Cell Biol. 111, 1839–1847 (1990).

    Article  CAS  PubMed  Google Scholar 

  57. Hunnicutt, G. R., Koppel, D. E. & Myles, D. G. Analysis of the process of localization of fertilin to the sperm posterior head plasma membrane domain during sperm maturation in the epididymis. Dev. Biol. 191, 146–159 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Hunnicutt, G. R., Koppel, D. E., Kwitny, S. & Cowan, A. E. Cyclic 3′, 5′-AMP causes ADAM1/ADAM2 to rapidly diffuse within the plasma membrane of guinea pig sperm. Biol. Reprod. 79, 999–1007 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Frayne, J. et al. Macaque MDC family of proteins: sequence analysis, tissue distribution and processing in the male reproductive tract. Mol. Hum. Reprod. 4, 429–437 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Cho, C., Ge, H., Branciforte, D., Primakoff, P. & Myles, D. G. Analysis of mouse fertilin in wild-type and fertilin beta(-/-) sperm: evidence for C-terminal modification, alpha/beta dimerization, and lack of essential role of fertilin alpha in sperm-egg fusion. Dev. Biol. 222, 289–295 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Kim, E., Nishimura, H. & Baba, T. Differential localization of ADAM1a and ADAM1b in the endoplasmic reticulum of testicular germ cells and on the surface of epididymal sperm. Biochem. Biophys. Res. Commun. 304, 313–319 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Kim, E. et al. Processing and subcellular localization of ADAM2 in the Macaca fascicularis testis and sperm. Anim. Reprod. Sci. 117, 155–159 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Zhu, G. Z., Myles, D. G. & Primakoff, P. Testase 1 (ADAM 24) a plasma membrane-anchored sperm protease implicated in sperm function during epididymal maturation or fertilization. J. Cell. Sci. 114, 1787–1794 (2001).

    CAS  PubMed  Google Scholar 

  64. Han, C. et al. Comprehensive analysis of reproductive ADAMs: relationship of ADAM4 and ADAM6 with an ADAM complex required for fertilization in mice. Biol. Reprod. 80, 1001–1008 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Kim, E. et al. Synthesis, processing, and subcellular localization of mouse ADAM3 during spermatogenesis and epididymal sperm transport. J. Reprod. Dev. 50, 571–578 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Kim, T. et al. Expression and relationship of male reproductive ADAMs in mouse. Biol. Reprod. 74, 744–750 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Linder, B., Bammer, S. & Heinlein, U. A. Delayed translation and posttranslational processing of cyritestin, an integral transmembrane protein of the mouse acrosome. Exp. Cell Res. 221, 66–72 (1995).

    Article  CAS  PubMed  Google Scholar 

  68. Yuan, R., Primakoff, P. & Myles, D. G. A role for the disintegrin domain of cyritestin, a sperm surface protein belonging to the ADAM family, in mouse sperm-egg plasma membrane adhesion and fusion. J. Cell Biol. 137, 105–112 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nishimura, H., Myles, D. G. & Primakoff, P. Identification of an ADAM2-ADAM3 complex on the surface of mouse testicular germ cells and cauda epididymal sperm. J. Biol. Chem. 282, 17900–17907 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Liu, H. W., Lin, Y. C., Chao, C. F., Chang, S. Y. & Sun, G. H. GP-83 and GP-39, two glycoproteins secreted by human epididymis are conjugated to spermatozoa during maturation. Mol. Hum. Reprod. 6, 422–428 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Sun, G. H., Lin, Y. C., Guo, Y. W., Chang, S. Y. & Liu, H. W. Purification of GP-83, a glycoprotein secreted by the human epididymis and conjugated to mature spermatozoa. Mol. Hum. Reprod. 6, 429–434 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Oh, J. S., Han, C. & Cho, C. ADAM7 is associated with epididymosomes and integrated into sperm plasma membrane. Mol. Cells 28, 441–446 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Han, C. et al. Identification of heat shock protein 5, calnexin and integral membrane protein 2B as Adam7-interacting membrane proteins in mouse sperm. J. Cell. Physiol. 226, 1186–1195 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Cho, C. et al. Fertilization defects in sperm from mice lacking fertilin beta. Science 281, 1857–1859 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Shamsadin, R. et al. Male mice deficient for germ-cell cyritestin are infertile. Biol. Reprod. 61, 1445–1451 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Nishimura, H., Cho, C., Branciforte, D. R., Myles, D. G. & Primakoff, P. Analysis of loss of adhesive function in sperm lacking cyritestin or fertilin beta. Dev. Biol. 233, 204–213 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Nishimura, H., Kim, E., Nakanishi, T. & Baba, T. Possible function of the ADAM1a/ADAM2 Fertilin complex in the appearance of ADAM3 on the sperm surface. J. Biol. Chem. 279, 34957–34962 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Kim, E. et al. Mouse sperm lacking ADAM1b/ADAM2 fertilin can fuse with the egg plasma membrane and effect fertilization. J. Biol. Chem. 281, 5634–5639 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Zhu, G. Z., Gupta, S., Myles, D. G. & Primakoff, P. Testase 1 (ADAM 24) a sperm surface metalloprotease is required for normal fertility in mice. Mol. Reprod. Dev. 76, 1106–1114 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Stein, K. K., Go, J. C., Primakoff, P. & Myles, D. G. Defects in secretory pathway trafficking during sperm development in Adam2 knockout mice. Biol. Reprod. 73, 1032–1038 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Marcello, M. R., Jia, W., Leary, J. A., Moore, K. L. & Evans, J. P. Lack of tyrosylprotein sulfotransferase-2 activity results in altered sperm-egg interactions and loss of ADAM3 and ADAM6 in epididymal sperm. J. Biol. Chem. 286, 13060–13070 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Suarez, S. S. & Pacey, A. A. Sperm transport in the female reproductive tract. Hum. Reprod. Update 12, 23–37 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Yamaguchi, R. et al. Disruption of ADAM3 impairs the migration of sperm into oviduct in mouse. Biol. Reprod. 81, 142–146 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Han, C. et al. Impaired sperm aggregation in Adam2 and Adam3 null mice. Fertil. Steril. 93, 2754–2756 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Tokuhiro, K., Ikawa, M., Benham, A. M. & Okabe, M. Protein disulfide isomerase homolog PDILT is required for quality control of sperm membrane protein ADAM3 and male infertility. Proc. Natl Acad. Sci. USA 109, 3850–3855 (2012).

    Article  PubMed  Google Scholar 

  86. Monclus, M. A. et al. Mouse sperm rosette: assembling during epididymal transit, in vitro disassemble, and oligosaccharide participation in the linkage material. Anat. Rec. (Hoboken) 290, 814–824 (2007).

    Article  Google Scholar 

  87. Yanagimachi, R. & Mahi, C. A. The sperm acrosome reaction and fertilization in the guinea-pig: a study in vivo. J. Reprod. Fertil. 46, 49–54 (1976).

    Article  CAS  PubMed  Google Scholar 

  88. Moore, H., Dvorakova, K., Jenkins, N. & Breed, W. Exceptional sperm cooperation in the wood mouse. Nature 418, 174–177 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Pizzari, T. & Foster, K. R. Sperm sociality: cooperation, altruism, and spite. PLoS Biol. 6, e130 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Muga, A., Neugebauer, W., Hirama, T. & Surewicz, W. K. Membrane interaction and conformational properties of the putative fusion peptide of PH-30, a protein active in sperm-egg fusion. Biochemistry 33, 4444–4448 (1994).

    Article  CAS  PubMed  Google Scholar 

  91. Niidome, T. et al. Membrane interaction of synthetic peptides related to the putative fusogenic region of PH-30 alpha, a protein in sperm-egg fusion. J. Pept. Res. 49, 563–569 (1997).

    Article  CAS  PubMed  Google Scholar 

  92. Martin, I., Epand, R. M. & Ruysschaert, J. M. Structural properties of the putative fusion peptide of fertilin, a protein active in sperm-egg fusion, upon interaction with the lipid bilayer. Biochemistry 37, 17030–17039 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Wolfe, C. A. et al. Membrane interactions of the putative fusion peptide (MF alpha P) from fertilin-alpha, the mouse sperm protein complex involved in fertilization. Mol. Membr. Biol. 16, 257–263 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Myles, D. G., Kimmel, L. H., Blobel, C. P., White, J. M. & Primakoff, P. Identification of a binding site in the disintegrin domain of fertilin required for sperm-egg fusion. Proc. Natl Acad. Sci. USA 91, 4195–4198 (1994).

    Article  CAS  PubMed  Google Scholar 

  95. Almeida, E. A. et al. Mouse egg integrin alpha 6 beta 1 functions as a sperm receptor. Cell 81, 1095–1104 (1995).

    Article  CAS  PubMed  Google Scholar 

  96. Evans, J. P., Schultz, R. M. & Kopf, G. S. Mouse sperm-egg plasma membrane interactions: analysis of roles of egg integrins and the mouse sperm homologue of PH-30 (fertilin) beta. J. Cell. Sci. 108, 3267–3278 (1995).

    CAS  PubMed  Google Scholar 

  97. Evans, J. P., Schultz, R. M. & Kopf, G. S. Roles of the disintegrin domains of mouse fertilins alpha and beta in fertilization. Biol. Reprod. 59, 145–152 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Kim, E. et al. Identification of a hyaluronidase, Hyal5, involved in penetration of mouse sperm through cumulus mass. Proc. Natl Acad. Sci. USA 102, 18028–18033 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Hagaman, J. R. et al. Angiotensin-converting enzyme and male fertility. Proc. Natl Acad. Sci. USA 95, 2552–2557 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Ikawa, M. et al. The putative chaperone calmegin is required for sperm fertility. Nature 387, 607–611 (1997).

    Article  CAS  PubMed  Google Scholar 

  101. Ikawa, M. et al. Calsperin is a testis-specific chaperone required for sperm fertility. J. Biol. Chem. 286, 5639–5646 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Ikawa, M. et al. Calmegin is required for fertilin alpha/beta heterodimerization and sperm fertility. Dev. Biol. 240, 254–261 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Yamaguchi, R., Yamagata, K., Ikawa, M., Moss, S. B. & Okabe, M. Aberrant distribution of ADAM3 in sperm from both angiotensin-converting enzyme (Ace)- and calmegin (Clgn)-deficient mice. Biol. Reprod. 75, 760–766 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Muro, Y. & Okabe, M. Mechanisms of fertilization—a view from the study of gene-manipulated mice. J. Androl. 32, 218–225 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Suarez, S. S. Regulation of sperm storage and movement in the mammalian oviduct. Int. J. Dev. Biol. 52, 455–462 (2008).

    Article  PubMed  Google Scholar 

  106. Ikawa, M., Inoue, N., Benham, A. M. & Okabe, M. Fertilization: a sperm's journey to and interaction with the oocyte. J. Clin. Invest. 120, 984–994 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Barraud-Lange, V. et al. Cyclic QDE peptide increases fertilization rates and provides healthy pups in mouse. Fertil. Steril. 91, 2110–2115 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. EMBL-EBI European Bioinformatics Institute. MUSCLE—Multiple Sequence Alignment [online], (2012).

  109. Department of Genome Sciences and the Department of Biology, University of Washington. PHYLIP [online], (2012).

  110. National Center for Biotechnology Information. Gene [online], (2012).

Download references

Acknowledgements

The author thanks Boyeon Lee, Jun Tae Kwon, and Heejin Choi for help with manuscript preparation. This work was supported by Korea Science and Engineering Foundation Grant 2010-0028776, Korea Research Foundation Grant KRF-2008-313-C00736, and Gwangju Institute of Science and Technology Systems Biology Infrastructure Establishment Grant.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, C. Testicular and epididymal ADAMs: expression and function during fertilization. Nat Rev Urol 9, 550–560 (2012). https://doi.org/10.1038/nrurol.2012.167

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2012.167

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing