Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular biomarkers in urothelial carcinoma of the bladder: are we there yet?

Abstract

The unprecedented advances in cancer genetics and genomics are rapidly affecting the clinical management of solid tumors. Molecular diagnostics are now an integral part of routine clinical management for patients with lung, colon, and breast cancer. In sharp contrast, molecular biomarkers have been largely excluded from current management algorithms for urologic malignancies. The need for new treatment options that can improve upon the modest outcomes currently associated with muscle-invasive bladder cancer is evident, and validated prognostic molecular biomarkers that can help clinicians to identify patients in need of early, aggressive management are lacking. Robust predictive biomarkers that are able to forecast and stratify responses to emerging targeted therapies are also needed.

Key Points

  • Molecular genetic evidence supports the existence of two distinct pathogenetic pathways for bladder cancer development, corresponding to two distinct biological and clinical phenotypes: non-muscle-invasive and muscle-invasive urothelial carcinoma

  • Disruption to the PI3K–AKT–mTOR pathway and alterations in the tyrosine kinase receptor gene FGFR3 and the oncogene HRAS are associated with non-muscle-invasive bladder cancer

  • The main genetic alterations underlying muscle-invasive bladder cancer involve tumor suppressor genes encoding proteins that regulate cell cycle and apoptosis pathways, including TP53, CDKN2A, CCND1, CDKN1B, and RB1

  • Delineation of the molecular pathways involved in bladder oncogenesis has fueled the quest for much-needed prognostic biomarkers, new targeted therapies, and markers of therapy response

  • A 'molecular grade' (based on FGFR3 and MIB1 expression) and a multitarget fluorescence in situ hybridization (FISH) assay have both achieved sufficient validation to be included in prospective multi-institutional trials

  • A panel of multiple cell cycle control markers—TP53, CDKN1B, CDKN1A, CDKN2A, CCND1, and RBL1—offers superior prognostic power over single marker approaches, and merits further rigorous prospective validation

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The divergent molecular pathways of oncogenesis in non-muscle-invasive and muscle-invasive bladder cancers.
Figure 2: Possible interactions between Ras–MAPK, JAK–STAT, and PI3K–AKT–mTOR signaling pathways associated with early oncogenesis in noninvasive papillary urothelial neoplasms.
Figure 3: Receptor tyrosine kinase (EGFR, Ras, MAP2K, and MAPK) and cell cycle regulator (p14, p16, p53, p21, cyclin D1, cyclin E, and pRb1) pathways in urothelial carcinoma.

Similar content being viewed by others

References

  1. Mitra, A. P., Datar, R. H. & Cote, R. J. Molecular pathways in invasive bladder cancer: new insights into mechanisms, progression, and target identification. J. Clin. Oncol. 24, 5552–5564 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Mitra, A. P. & Cote, R. J. Molecular screening for bladder cancer: progress and potential. Nat. Rev. Urol. 7, 11–20 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Mitra, A. P. & Cote, R. J. Molecular pathogenesis and diagnostics of bladder cancer. Ann. Rev. Pathol. 4, 251–285 (2009).

    Article  CAS  Google Scholar 

  4. Wu, X. R. Urothelial tumorigenesis: a tale of divergent pathways. Nat. Rev. Cancer 5, 713–725 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Mo, L. et al. Hyperactivation of Ha-ras oncogene, but not Ink4a/Arf deficiency, triggers bladder tumorigenesis. J. Clin. Invest. 117, 314–325 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rabbani, F. et al. Prognostic significance of p27(Kip1) expression in bladder cancer. BJU Int. 100, 259–263 (2007).

    Article  PubMed  Google Scholar 

  7. Sanchez-Carbayo, M., Socci, N. D., Lozano, J., Saint, F. & Cordon-Cardo, C. Defining molecular profiles of poor outcome in patients with invasive bladder cancer using oligonucleotide microarrays. J. Clin. Oncol. 24, 778–789 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Sanchez-Carbayo, M. et al. Molecular profiling of bladder cancer using cDNA microarrays: defining histogenesis and biological phenotypes. Cancer Res. 62, 6973–6980 (2002).

    CAS  PubMed  Google Scholar 

  9. Sanchez-Carbayo, M. & Cordon-Cardo, C. Applications of array technology: identification of molecular targets in bladder cancer. Br. J. Cancer 89, 2172–2177 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ioachim, E. et al. Hypoxia-inducible factors HIF-1alpha and HIF-2alpha expression in bladder cancer and their associations with other angiogenesis-related proteins. Urol. Int. 77, 255–263 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Ioachim, E. et al. Thrombospondin-1 expression in urothelial carcinoma: prognostic significance and association with p53 alterations, tumour angiogenesis and extracellular matrix components. BMC Cancer 6, 140 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lascombe, I. et al. N-cadherin as a novel prognostic marker of progression in superficial urothelial tumors. Clin. Cancer Res. 12, 2780–2787 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Rotterud, R., Nesland, J. M., Berner, A. & Fossa, S. D. Expression of the epidermal growth factor receptor family in normal and malignant urothelium. BJU Int. 95, 1344–1350 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Highshaw, R. A., McConkey, D. J. & Dinney, C. P. Integrating basic science and clinical research in bladder cancer: update from the first bladder Specialized Program of Research Excellence (SPORE). Curr. Opin. Urol. 14, 295–300 (2004).

    Article  PubMed  Google Scholar 

  15. Clairotte, A. et al. Expression of E-cadherin and alpha-, beta-, gamma-catenins in patients with bladder cancer: identification of gamma-catenin as a new prognostic marker of neoplastic progression in T1 superficial urothelial tumors. Am. J. Clin. Pathol. 125, 119–126 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Chatterjee, S. J. et al. Combined effects of p53, p21, and pRb expression in the progression of bladder transitional cell carcinoma. J. Clin. Oncol. 22, 1007–1013 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Beekman, K. W., Bradley, D. & Hussain, M. New molecular targets and novel agents in the treatment of advanced urothelial cancer. Semin. Oncol. 34, 154–164 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Shariat, S. F., Ashfaq, R., Sagalowsky, A. I. & Lotan, Y. Predictive value of cell cycle biomarkers in nonmuscle invasive bladder transitional cell carcinoma. J. Urol. 177, 481–487 (2007).

    Article  PubMed  Google Scholar 

  19. Miyamoto, H. et al. Infrequent somatic mutations of the p16 and p15 genes in human bladder cancer: p16 mutations occur only in low-grade and superficial bladder cancers. Oncol. Res. 7, 327–330 (1995).

    CAS  PubMed  Google Scholar 

  20. Miyamoto, H. et al. Analyses of p53 gene mutations in primary human bladder cancer. Oncol. Res. 5, 245–249 (1993).

    CAS  PubMed  Google Scholar 

  21. Birkhahn, M. et al. Predicting recurrence and progression of noninvasive papillary bladder cancer at initial presentation based on quantitative gene expression profiles. Eur. Urol. 57, 12–20 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Cheng, L. et al. The origins of urothelial carcinoma. Expert Rev. Anticancer Ther. 10, 865–880 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Mengual, L. et al. Gene expression signature in urine for diagnosing and assessing aggressiveness of bladder urothelial carcinoma. Clin. Cancer Res. 16, 2624–2633 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Shariat, S. F., Ashfaq, R., Sagalowsky, A. I. & Lotan, Y. Association of cyclin D1 and E1 expression with disease progression and biomarkers in patients with nonmuscle-invasive urothelial cell carcinoma of the bladder. Urol. Oncol. 25, 468–475 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Stein, J. P. et al. Radical cystectomy in the treatment of invasive bladder cancer: long-term results in 1,054 patients. J. Clin. Oncol. 19, 666–675 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Kawauchi, S. et al. 9p21 index as estimated by dual-color fluorescence in situ hybridization is useful to predict urothelial carcinoma recurrence in bladder washing cytology. Hum. Pathol. 40, 1783–1789 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Kruger, S., Mess, F., Bohle, A. & Feller, A. C. Numerical aberrations of chromosome 17 and the 9p21 locus are independent predictors of tumor recurrence in non-invasive transitional cell carcinoma of the urinary bladder. Int. J. Oncol. 23, 41–48 (2003).

    PubMed  Google Scholar 

  28. Skacel, M. et al. Multitarget fluorescence in situ hybridization assay detects transitional cell carcinoma in the majority of patients with bladder cancer and atypical or negative urine cytology. J. Urol. 169, 2101–2105 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Moonen, P. M. et al. UroVysion compared with cytology and quantitative cytology in the surveillance of non-muscle-invasive bladder cancer. Eur. Urol. 51, 1275–80 (2007).

    Article  PubMed  Google Scholar 

  30. Sarosdy, M. F. et al. Use of a multitarget fluorescence in situ hybridization assay to diagnose bladder cancer in patients with hematuria. J. Urol. 176, 44–47 (2006).

    Article  PubMed  Google Scholar 

  31. Yoder, B. J. et al. Reflex UroVysion testing of bladder cancer surveillance patients with equivocal or negative urine cytology: a prospective study with focus on the natural history of anticipatory positive findings. Am. J. Clin. Pathol. 127, 295–301 (2007).

    Article  PubMed  Google Scholar 

  32. Fritsche, H. M. et al. Multicolor FISH (UroVysion) facilitates follow-up of patients with high-grade urothelial carcinoma of the bladder. Am. J. Clin. Pathol. 134, 597–603 (2010).

    Article  PubMed  Google Scholar 

  33. Karnwal, A. et al. The role of fluorescence in situ hybridization assay for surveillance of non-muscle invasive bladder cancer. Can. J. Urol. 17, 5077–5081 (2010).

    PubMed  Google Scholar 

  34. Schlomer, B. J., Ho, R., Sagalowsky, A., Ashfaq, R. & Lotan, Y. Prospective validation of the clinical usefulness of reflex fluorescence in situ hybridization assay in patients with atypical cytology for the detection of urothelial carcinoma of the bladder. J. Urol. 183, 62–67 (2010).

    Article  PubMed  Google Scholar 

  35. Ferra, S. et al. Reflex UroVysion testing in suspicious urine cytology cases. Cancer 117, 7–14 (2009).

    PubMed  Google Scholar 

  36. Savic, S. et al. The prognostic value of cytology and fluorescence in situ hybridization in the follow-up of nonmuscle-invasive bladder cancer after intravesical bacillus Calmette-Guerin therapy. Int. J. Cancer 124, 2899–2904 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Maffezzini, M. et al. Prognostic significance of fluorescent in situ hybridisation in the follow-up of non-muscle-invasive bladder cancer. Anticancer Res. 30, 4761–4765 (2010).

    PubMed  Google Scholar 

  38. Whitson, J., Berry, A., Carroll, P. & Konety, B. A multicolour fluorescence in situ hybridization test predicts recurrence in patients with high-risk superficial bladder tumours undergoing intravesical therapy. BJU Int. 104, 336–339 (2009).

    Article  PubMed  Google Scholar 

  39. Renshaw, A. A. UroVysion, urine cytology, and the College of American Pathologists: where should we go from here? Arch. Pathol. Lab. Med. 134, 1106–1107 (2010).

    PubMed  Google Scholar 

  40. Lopez-Knowles, E. et al. PIK3CA mutations are an early genetic alteration associated with FGFR3 mutations in superficial papillary bladder tumors. Cancer Res. 66, 7401–7404 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Kompier, L. C. et al. FGFR3, HRAS, KRAS, NRAS and PIK3CA mutations in bladder cancer and their potential as biomarkers for surveillance and therapy. PLoS ONE 5, e13821 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. van Rhijn, B. W. et al. Molecular grade (FGFR3/MIB-1) and EORTC risk scores are predictive in primary non-muscle-invasive bladder cancer. Eur. Urol. 58, 433–441 (2010).

    Article  PubMed  Google Scholar 

  43. Mason, R. A. et al. EGFR pathway polymorphisms and bladder cancer susceptibility and prognosis. Carcinogenesis 30, 1155–1160 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Simonetti, S. et al. Role of polysomy 17 in transitional cell carcinoma of the bladder: immunohistochemical study of HER2/neu expression and fish analysis of c-erbB-2 gene and chromosome 17. Int. J. Surg. Pathol. 17, 198–205 (2009).

    Article  PubMed  Google Scholar 

  45. Latif, Z. et al. HER2/neu gene amplification and protein overexpression in G3 pT2 transitional cell carcinoma of the bladder: a role for anti-HER2 therapy? Eur. J. Cancer 40, 56–63 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Gandour-Edwards, R. et al. Does HER2/neu expression provide prognostic information in patients with advanced urothelial carcinoma? Cancer 95, 1009–1015 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Eissa, S., Ali, H. S., Al Tonsi, A. H., Zaglol, A. & El Ahmady, O. HER2/neu expression in bladder cancer: relationship to cell cycle kinetics. Clin. Biochem. 38, 142–148 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Billerey, C. et al. Frequent FGFR3 mutations in papillary non-invasive bladder (pTa) tumors. Am. J. Pathol. 158, 1955–1959 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Leibl, S. et al. EGFR expression in urothelial carcinoma of the upper urinary tract is associated with disease progression and metaplastic morphology. APMIS 116, 27–32 (2008).

    Article  PubMed  Google Scholar 

  50. Bolenz, C. et al. Human epidermal growth factor receptor 2 expression status provides independent prognostic information in patients with urothelial carcinoma of the urinary bladder. BJU Int. 106, 1216–1222 (2010).

    Article  PubMed  Google Scholar 

  51. Zuiverloon, T. C. et al. Fibroblast growth factor receptor 3 mutation analysis on voided urine for surveillance of patients with low-grade non-muscle-invasive bladder cancer. Clin. Cancer Res. 16, 3011–3018 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Miyake, M. et al. Fibroblast growth factor receptor 3 mutation in voided urine is a useful diagnostic marker and significant indicator of tumor recurrence in non-muscle invasive bladder cancer. Cancer Sci. 101, 250–258 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Hernandez, S. et al. Prospective study of FGFR3 mutations as a prognostic factor in nonmuscle invasive urothelial bladder carcinomas. J. Clin. Oncol. 24, 3664–3671 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Bolenz, C. & Lotan, Y. Translational research in bladder cancer: from molecular pathogenesis to useful tissue biomarkers. Cancer Biol. Ther. 10, 407–415 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Chakravarti, A. et al. Expression of the epidermal growth factor receptor and Her-2 are predictors of favorable outcome and reduced complete response rates, respectively, in patients with muscle-invading bladder cancers treated by concurrent radiation and cisplatin-based chemotherapy: a report from the Radiation Therapy Oncology Group. Int. J. Radiat. Oncol. Biol. Phys. 62, 309–317 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Jimenez, R. E. et al. Her-2/neu overexpression in muscle-invasive urothelial carcinoma of the bladder: prognostic significance and comparative analysis in primary and metastatic tumors. Clin. Cancer Res. 7, 2440–2447 (2001).

    CAS  PubMed  Google Scholar 

  57. Ravery, V. et al. Evaluation of epidermal growth factor receptor, transforming growth factor alpha, epidermal growth factor and c-erbB2 in the progression of invasive bladder cancer. Urol. Res. 25, 9–17 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Sarkis, A. S. et al. Nuclear overexpression of p53 protein in transitional cell bladder carcinoma: a marker for disease progression. J. Natl Cancer Inst. 85, 53–59 (1993).

    Article  CAS  PubMed  Google Scholar 

  59. Sarkis, A. S. et al. Association of P53 nuclear overexpression and tumor progression in carcinoma in situ of the bladder. J. Urol. 152, 388–392 (1994).

    Article  CAS  PubMed  Google Scholar 

  60. Sarkis, A. S. et al. Prognostic value of p53 nuclear overexpression in patients with invasive bladder cancer treated with neoadjuvant MVAC. J. Clin. Oncol. 13, 1384–1390 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Shariat, S. F. et al. p53 expression in patients with advanced urothelial cancer of the urinary bladder. BJU Int. 105, 489–495 (2010).

    Article  PubMed  Google Scholar 

  62. Lopez-Beltran, A. et al. Cyclin D3 expression in primary Ta/T1 bladder cancer. J. Pathol. 209, 106–113 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Lopez-Beltran, A. et al. Prognostic factors in stage T1 grade 3 bladder cancer survival: the role of G1-S. modulators (p53, p21Waf1, p27kip1, Cyclin D1, and Cyclin D3) and proliferation index (ki67-MIB1). Eur. Urol. 45, 606–612 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Fu, T. Y., Tu, M. S., Tseng, H. H. & Wang, J. S. Overexpression of p27kip1 in urinary bladder urothelial carcinoma. Int. J. Urol. 14, 1084–1087 (2007).

    Article  PubMed  Google Scholar 

  65. Yin, M., Bastacky, S., Parwani, A. V., McHale, T. & Dhir, R. P16ink4 Immunoreactivity is a reliable marker for urothelial carcinoma in situ. Hum. Pathol. 39, 527–535 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Kruger, S., Mahnken, A., Kausch, I. & Feller, A. C. P16 immunoreactivity is an independent predictor of tumor progression in minimally invasive urothelial bladder carcinoma. Eur. Urol. 47, 463–467 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Sgambato, A. et al. Loss of P27Kip1 expression correlates with tumor grade and with reduced disease-free survival in primary superficial bladder cancers. Cancer Res. 59, 3245–3250 (1999).

    CAS  PubMed  Google Scholar 

  68. Garcia del Muro, X. et al. p53 and p21 Expression levels predict organ preservation and survival in invasive bladder carcinoma treated with a combined-modality approach. Cancer 100, 1859–1867 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Shariat, S. F. et al. Multiple biomarkers improve prediction of bladder cancer recurrence and mortality in patients undergoing cystectomy. Cancer 112, 315–325 (2008).

    Article  PubMed  Google Scholar 

  70. Shariat, S. F. et al. Predictive value of combined immunohistochemical markers in patients with pT1 urothelial carcinoma at radical cystectomy. J. Urol. 182, 78–84 (2009).

    Article  PubMed  Google Scholar 

  71. Shariat, S. F., Ashfaq, R., Sagalowsky, A. I. & Lotan, Y. Predictive value of cell cycle biomarkers in nonmuscle invasive bladder transitional cell carcinoma. J. Urol. 177, 481–487 (2007).

    Article  PubMed  Google Scholar 

  72. Dalbagni, G. et al. Molecular genetic alterations of chromosome 17 and p53 nuclear overexpression in human bladder cancer. Diagn. Mol. Pathol. 2, 4–13 (1993).

    Article  CAS  PubMed  Google Scholar 

  73. Nishiyama, N. et al. Genome-wide DNA methylation profiles in urothelial carcinomas and urothelia at the precancerous stage. Cancer Sci. 101, 231–240 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Lin, H. H. et al. Increase sensitivity in detecting superficial, low grade bladder cancer by combination analysis of hypermethylation of E-cadherin, p16, p14, RASSF1A genes in urine. Urol. Oncol. 28, 597–602 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Vinci, S. et al. Quantitative methylation analysis of BCL2, hTERT, and DAPK promoters in urine sediment for the detection of non-muscle-invasive urothelial carcinoma of the bladder: a prospective, two-center validation study. Urol. Oncol. 29, 150–156 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Cabello, M. J. et al. Multiplexed methylation profiles of tumor suppressor genes in bladder cancer. J. Mol. Diagn. 13, 29–40 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Vallot, C. et al. A novel epigenetic phenotype associated with the most aggressive pathway of bladder tumor progression. J. Natl Cancer Inst. 103, 47–60 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Dudziec, E. et al. Hypermethylation of CpG islands and shores around specific microRNAs and mirtrons is associated with the phenotype and presence of bladder cancer. Clin. Cancer Res. 17, 1287–1296 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Wiklund, E. D. et al. Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. Int. J. Cancer 128, 1327–1334 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Serizawa, R. R. et al. Integrated genetic and epigenetic analysis of bladder cancer reveals an additive diagnostic value of FGFR3 mutations and hypermethylation events. Int. J. Cancer 129, 78–87 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Catto, J. W. et al. Promoter hypermethylation is associated with tumor location, stage, and subsequent progression in transitional cell carcinoma. J. Clin. Oncol. 23, 2903–2910 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Friedrich, M. G. et al. Detection of methylated apoptosis-associated genes in urine sediments of bladder cancer patients. Clin. Cancer Res. 10, 7457–7465 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Chan, M. W. et al. Hypermethylation of multiple genes in tumor tissues and voided urine in urinary bladder cancer patients. Clin. Cancer Res. 8, 464–470 (2002).

    CAS  PubMed  Google Scholar 

  84. Yates, D. R. et al. Methylational urinalysis: a prospective study of bladder cancer patients and age stratified benign controls. Oncogene 25, 1984–1988 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Hoque, M. O. et al. Quantitation of promoter methylation of multiple genes in urine DNA and bladder cancer detection. J. Natl Cancer Inst. 98, 996–1004 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Yates, D. R. et al. Promoter hypermethylation identifies progression risk in bladder cancer. Clin. Cancer Res. 13, 2046–2053 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Cheng, L. et al. Bladder cancer: translating molecular genetic insights into clinical practice. Hum. Pathol. 42, 455–481 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Miyamoto, H. et al. Low-grade papillary urothelial carcinoma of the urinary bladder: a clinicopathologic analysis of a post-World Health Organization/International Society of Urological Pathology classification cohort from a single academic center. Arch. Pathol. Lab. Med. 134, 1160–1163 (2010).

    PubMed  Google Scholar 

  89. Mitra, A. P. et al. Generation of a concise gene panel for outcome prediction in urinary bladder cancer. J. Clin. Oncol. 27, 3929–3937 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Rothman, N. et al. A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci. Nat. Genet. 42, 978–984 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sanchez-Carbayo, M. & Cordon-Cardo, C. Molecular alterations associated with bladder cancer progression. Semin. Oncol. 34, 75–84 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Smith, S. C. et al. A 20-gene model for molecular nodal staging of bladder cancer: development and prospective assessment. Lancet Oncol. 12, 137–143 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  93. van Rhijn, B. W. et al. Molecular grading of urothelial cell carcinoma with fibroblast growth factor receptor 3 and MIB-1 is superior to pathologic grade for the prediction of clinical outcome. J. Clin. Oncol. 21, 1912–1921 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Sylvester, R. J. et al. Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. Eur. Urol. 49, 466–477 (2006).

    Article  PubMed  Google Scholar 

  95. Lindgren, D. et al. Combined gene expression and genomic profiling define two intrinsic molecular subtypes of urothelial carcinoma and gene signatures for molecular grading and outcome. Cancer Res. 70, 3463–3472 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Quintero, A. et al. Ki-67 MIB1 labelling index and the prognosis of primary TaT1 urothelial cell carcinoma of the bladder. J. Clin. Pathol. 59, 83–88 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Margulis, V., Shariat, S. F., Ashfaq, R., Sagalowsky, A. I. & Lotan, Y. Ki-67 is an independent predictor of bladder cancer outcome in patients treated with radical cystectomy for organ-confined disease. Clin. Cancer Res. 12, 7369–7373 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Margulis, V. et al. Multi-institutional validation of the predictive value of Ki-67 labeling index in patients with urinary bladder cancer. J. Natl Cancer Inst. 101, 114–119 (2009).

    Article  PubMed  Google Scholar 

  99. Ramos, D. et al. Prognostic value of morphometry in low grade papillary urothelial bladder neoplasms. Anal. Quant. Cytol. Histol. 26, 285–294 (2004).

    PubMed  Google Scholar 

  100. Ali-El-Dein, B. et al. Superficial bladder tumours: analysis of prognostic factors and construction of a predictive index. BJU Int. 92, 393–399 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Loughman, N. T., Lin, B. P., Dent, O. F. & Newland, R. C. DNA ploidy of bladder cancer using bladder biopsy supernate specimens. Anal. Quant. Cytol. Histol. 25, 146–158 (2003).

    PubMed  Google Scholar 

  102. Baak, J. P. et al. DNA cytometric features in biopsies of TaT1 urothelial cell cancer predict recurrence and stage progression more accurately than stage, grade, or treatment modality. Urology 61, 1266–1272 (2003).

    Article  PubMed  Google Scholar 

  103. Bol, M. G. et al. Correlation of grade of urothelial cell carcinomas and DNA histogram features assessed by flow cytometry and automated image cytometry. Anal. Cell. Pathol. 25, 147–153 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bellaoui, H. et al. Flow cytometric DNA analysis and cytology in diagnosis and prognosis of bladder tumors: preliminary results of a comparative study of bladder lavage. Ann. Urol. (Paris) 36, 45–52 (2002).

    Article  CAS  Google Scholar 

  105. Caraway, N. P., Khanna, A., Payne, L., Kamat, A. M. & Katz, R. L. Combination of cytologic evaluation and quantitative digital cytometry is reliable in detecting recurrent disease in patients with urinary diversions. Cancer 111, 323–329 (2007).

    Article  PubMed  Google Scholar 

  106. Falkman, K., Tribukait, B., Nyman, C. R., Larsson, P. & Norming, U. S-phase fraction in superficial urothelial carcinoma of the bladder—a prospective, long-term, follow-up study. Scand. J. Urol. Nephrol. 38, 278–284 (2004).

    Article  PubMed  Google Scholar 

  107. Lin, J. et al. E-cadherin promoter polymorphism (C-160A) and risk of recurrence in patients with superficial bladder cancer. Clin. Genet. 70, 240–245 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Palit, V., Phillips, R. M., Puri, R., Shah, T. & Bibby, M. C. Expression of HIF-1alpha and Glut-1 in human bladder cancer. Oncol. Rep. 14, 909–913 (2005).

    CAS  PubMed  Google Scholar 

  109. Chai, C. Y. et al. Hypoxia-inducible factor-1alpha expression correlates with focal macrophage infiltration, angiogenesis and unfavourable prognosis in urothelial carcinoma. J. Clin. Pathol. 61, 658–664 (2008).

    Article  PubMed  Google Scholar 

  110. Crew, J. P. et al. Urinary vascular endothelial growth factor and its correlation with bladder cancer recurrence rates. J. Urol. 161, 799–804 (1999).

    Article  CAS  PubMed  Google Scholar 

  111. Crew, J. P. et al. Vascular endothelial growth factor is a predictor of relapse and stage progression in superficial bladder cancer. Cancer Res. 57, 5281–5285 (1997).

    CAS  PubMed  Google Scholar 

  112. Turner, K. J. et al. The hypoxia-inducible genes VEGF and CA9 are differentially regulated in superficial versus invasive bladder cancer. Br. J. Cancer 86, 1276–1282 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tickoo, S. K. et al. Hypoxia-inducible factor and mammalian target of rapamycin pathway markers in urothelial carcinoma of the bladder: possible therapeutic implications. BJU Int. 107, 844–849 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Platt, F. M. et al. Spectrum of phosphatidylinositol 3-kinase pathway gene alterations in bladder cancer. Clin. Cancer Res. 15, 6008–6017 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Schultz, L. et al. Expression status and prognostic significance of mammalian target of rapamycin pathway members in urothelial carcinoma of urinary bladder after cystectomy. Cancer 116, 5517–5526 (2010).

    Article  PubMed  Google Scholar 

  116. Comperat, E. et al. Aurora-A/STK-15 is a predictive factor for recurrent behaviour in non-invasive bladder carcinoma: a study of 128 cases of non-invasive neoplasms. Virchows Arch. 450, 419–424 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Mhawech-Fauceglia, P., Fischer, G., Beck, A., Cheney, R. T. & Herrmann, F. R. Raf1, Aurora-A/STK15 and E-cadherin biomarkers expression in patients with pTa/pT1 urothelial bladder carcinoma; a retrospective TMA study of 246 patients with long-term follow-up. Eur. J. Surg. Oncol. 32, 439–444 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Veerla, S., Panagopoulos, I., Jin, Y., Lindgren, D. & Hoglund, M. Promoter analysis of epigenetically controlled genes in bladder cancer. Genes Chromosomes Cancer 47, 368–378 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Wszolek, M. F. et al. A MicroRNA expression profile defining the invasive bladder tumor phenotype. Urol. Oncol. http://dx.doi.org/10.1016/j.urolonc.2009.08.024 (2009).

  120. Catto, J. W. et al. Distinct microRNA alterations characterize high- and low-grade bladder cancer. Cancer Res. 69, 8472–8481 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Iyer, G., Milowsky, M. I. & Bajorin, D. F. Novel strategies for treating relapsed/refractory urothelial carcinoma. Expert Rev. Anticancer Ther. 10, 1917–1932 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Wallerand, H., Reiter, R. R. & Ravaud, A. Molecular targeting in the treatment of either advanced or metastatic bladder cancer or both according to the signalling pathways. Curr. Opin. Urol. 18, 524–532 (2008).

    Article  PubMed  Google Scholar 

  123. Amit, D., Tamir, S., Birman, T., Gofrit, O. N. & Hochberg, A. Development of targeted therapy for bladder cancer mediated by a double promoter plasmid expressing diphtheria toxin under the control of IGF2-P3 and IGF2-P4 regulatory sequences. Int. J. Clin. Exp. Med. 4, 91–102 (2011).

    PubMed  PubMed Central  Google Scholar 

  124. Gerullis, H. et al. Long-term response in advanced bladder cancer involving the use of temsirolimus and vinflunine after platin resistance. Anticancer Drugs 22, 940–943 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Yafi, F. A., North, S. & Kassouf, W. First- and second-line therapy for metastatic urothelial carcinoma of the bladder. Curr. Oncol. 18, e25–34 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhang, X. & Godbey, W. T. Preclinical evaluation of a gene therapy treatment for transitional cell carcinoma. Cancer Gene Ther. 18, 34–41 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Smaldone, M. C. & Davies, B. J. BC-819, a plasmid comprising the H19 gene regulatory sequences and diphtheria toxin A, for the potential targeted therapy of cancers. Curr. Opin. Mol. Ther. 12, 607–616 (2010).

    CAS  PubMed  Google Scholar 

  128. Kramer, M. W., Krege, S., Peters, I., Merseburger, A. S. & Kuczyk, M. A. Targeted therapy of urological tumours. Experimental field or established therapeutic approach? Urologe A. 49, 1260–1265 (2010).

    Article  CAS  PubMed  Google Scholar 

  129. Ching, C. B. & Hansel, D. E. Expanding therapeutic targets in bladder cancer: the PI3K/Akt/mTOR pathway. Lab. Invest. 90, 1406–1414 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Black, P. C., Agarwal, P. K. & Dinney, C. P. Targeted therapies in bladder cancer—an update. Urol. Oncol. 25, 433–438 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Black, P. C. & Dinney, C. P. Bladder cancer angiogenesis and metastasis--translation from murine model to clinical trial. Cancer Metastasis Rev. 26, 623–634 (2007).

    Article  PubMed  Google Scholar 

  132. Downward, J. Targeting RAS signalling pathways in cancer therapy. Nat. Rev. Cancer 3, 11–22 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Bellmunt, J., Hussain, M. & Dinney, C. P. Novel approaches with targeted therapies in bladder cancer. Therapy of bladder cancer by blockade of the epidermal growth factor receptor family. Crit. Rev. Oncol. Hematol. 46, S85–S104 (2003).

    Article  PubMed  Google Scholar 

  134. Wallerand, H., Robert, G., Bernhard, J. C., Ravaud, A. & Ferriere, J. M. Targeted therapy for locally advanced and/or metastatic bladder cancer. Prog. Urol. 18, 407–417 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Hussain, M. H. et al. Trastuzumab, paclitaxel, carboplatin, and gemcitabine in advanced human epidermal growth factor receptor-2/neu-positive urothelial carcinoma: results of a multicenter phase II National Cancer Institute trial. J. Clin. Oncol. 25, 2218–2224 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Hansel, D. E., Swain, E., Dreicer, R. & Tubbs, R. R. HER2 overexpression and amplification in urothelial carcinoma of the bladder is associated with MYC coamplification in a subset of cases. Am. J. Clin. Pathol. 130, 274–281 (2008).

    Article  PubMed  Google Scholar 

  137. Inoue, K. et al. Paclitaxel enhances the effects of the anti-epidermal growth factor receptor monoclonal antibody ImClone C225 in mice with metastatic human bladder transitional cell carcinoma. Clin. Cancer Res. 6, 4874–4884 (2000).

    CAS  PubMed  Google Scholar 

  138. Perrotte, P. et al. Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice. Clin. Cancer Res. 5, 257–265 (1999).

    CAS  PubMed  Google Scholar 

  139. Philips, G. K. et al. A phase II trial of cisplatin, fixed dose-rate gemcitabine and gefitinib for advanced urothelial tract carcinoma: results of the Cancer and Leukaemia Group B 90102. BJU Int. 101, 20–25 (2008).

    CAS  PubMed  Google Scholar 

  140. Philips, G. K. et al. A phase II trial of cisplatin (C), gemcitabine (G.) and gefitinib for advanced urothelial tract carcinoma: results of Cancer and Leukemia Group B (CALGB) 90102. Ann. Oncol. 20, 1074–1079 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wulfing, C. et al. A single-arm, multicenter, open-label phase 2 study of lapatinib as the second-line treatment of patients with locally advanced or metastatic transitional cell carcinoma. Cancer 115, 2881–2890 (2009).

    Article  CAS  PubMed  Google Scholar 

  142. Bradley, D. A. et al. Randomized, double-blind, placebo-controlled phase II trial of maintenance sunitinib versus placebo after chemotherapy for patients with advanced urothelial carcinoma: scientific rationale and study design. Clin. Genitourin. Cancer 5, 460–463 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Hahn, N. M. et al. Phase II trial of cisplatin, gemcitabine, and bevacizumab as first-line therapy for metastatic urothelial carcinoma: Hoosier Oncology Group GU 04–75. J. Clin. Oncol. 29, 1525–1530 (2011).

    Article  CAS  PubMed  Google Scholar 

  144. Elfiky, A. A. & Rosenberg, J. E. Targeting angiogenesis in bladder cancer. Curr. Oncol. Rep. 11, 244–249 (2009).

    Article  CAS  PubMed  Google Scholar 

  145. Miyamoto, H. et al. Non-invasive papillary urothelial neoplasms: the 2004 WHO/ISUP classification system. Pathol. Int. 60, 1–8 (2010).

    Article  PubMed  Google Scholar 

  146. Millan-Rodriguez, F., Chechile-Toniolo, G., Salvador-Bayarri, J., Palou, J. & Vicente-Rodriguez, J. Multivariate analysis of the prognostic factors of primary superficial bladder cancer. J. Urol. 163, 73–78 (2000).

    Article  CAS  PubMed  Google Scholar 

  147. Soloway, M. S., Sofer, M. & Vaidya, A. Contemporary management of stage T1 transitional cell carcinoma of the bladder. J. Urol. 167, 1573–1583 (2002).

    Article  PubMed  Google Scholar 

  148. Bensalah, K., Montorsi, F. & Shariat, S. F. Challenges of cancer biomarker profiling. Eur. Urol. 52, 1601–1609 (2007).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Netto, G. Molecular biomarkers in urothelial carcinoma of the bladder: are we there yet?. Nat Rev Urol 9, 41–51 (2012). https://doi.org/10.1038/nrurol.2011.193

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2011.193

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing