Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Diagnostic, prognostic and therapeutic implications of microRNAs in urologic tumors

Abstract

MicroRNAs (miRNAs) are small, non-coding RNAs that have an important role in the regulation of carcinogenic pathways. The observations that miRNAs are differentially expressed in tumor versus corresponding normal tissue, and that they regulate important breakpoints during carcinogenesis, are of interest for urologic oncologists. As biomarkers, they might be helpful tools for diagnostic, prognostic and monitoring purposes. Furthermore, miRNAs might be potential targets for novel therapeutic strategies, especially in patients with tumor subtypes that do not respond to currently available therapies. In this Review, we will focus on the current proceedings of miRNA research in urologic tumors. In the past decade, the number of published articles related to miRNAs in urologic oncology has increased, highlighting the ongoing importance of miRNAs in this field. Current studies support the hypothesis that miRNA will gain influence in clinical practice. Here, therefore, we illustrate the current knowledge of miRNA function in urologic tumors and draw the attention of urologists to the future opportunities and challenges of this research field.

Key Points

  • MicroRNAs (miRNAs) have oncogenic and tumor-suppressive activities, and influence the proliferation, migration, and invasion of cells

  • miRNAs are deregulated in urologic tumors, and can be detected in fresh or archived tissue as well as in blood or urine

  • miRNAs are promising diagnostic and prognostic tumor markers and potential therapeutic tools

  • Identification of miRNA-regulated pathways may lead to a better understanding of the development and progression of urologic tumors

  • Manipulation of oncogenic or tumor-suppressive miRNAs might present novel therapeutic strategies for urologic tumors

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Annual miRNA publications indexed in the PubMed database, in total and related to urologic neoplasms.
Figure 2: Schematic representation of miRNA biogenesis.
Figure 3: Deregulation of miRNAs and their oncogenic and tumor-suppressive action.

Similar content being viewed by others

References

  1. Kutter, C. & Svoboda, P. miRNA, siRNA, piRNA: knowns of the unknown. RNA Biol. 5, 181–188 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Pezer, Z. & Ugarkovic, D. Role of non-coding RNA and heterochromatin in aneuploidy and cancer. Semin. Cancer Biol. 18, 123–130 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Costa, F. F. Non-coding RNAs: lost in translation? Gene 386, 1–10 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Perez, D. S. et al. Long, abundantly expressed non-coding transcripts are altered in cancer. Hum. Mol. Genet. 17, 642–655 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Coppola, V., De Maria, R. & Bonci, D. MicroRNAs and prostate cancer. Endocr. Relat. Cancer 17, F1–F17 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. DeVere White, R. W., Vinall, R. L., Tepper, C. G. & Shi, X. B. MicroRNAs and their potential for translation in prostate cancer. Urol. Oncol. 27, 307–311 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gandellini, P., Folini, M. & Zaffaroni, N. Towards the definition of prostate cancer-related microRNAs: where are we now? Trends Mol. Med. 15, 381–390 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Shi, X. B., Tepper, C. G. & DeVere White, R. W. MicroRNAs and prostate cancer. J. Cell. Mol. Med. 12, 1456–1465 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schaefer, A. et al. MicroRNAs and cancer: current state and future perspectives in urologic oncology. Urol. Oncol. 28, 4–13 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Metias, S. M., Lianidou, E. & Yousef, G. M. MicroRNAs in clinical oncology: at the crossroads between promises and problems. J. Clin. Pathol. 62, 771–776 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. van den Berg, A., Mols, J. & Han, J. RISC-target interaction: cleavage and translational suppression. Biochim. Biophys. Acta 1779, 668–677 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Winter, J., Jung, S., Keller, S., Gregory, R. I. & Diederichs, S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat. Cell Biol. 11, 228–234 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Pillai, R. S. et al. Inhibition of translational initiation by let-7 microRNA in human cells. Science 309, 1573–1576 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Pillai, R. S., Bhattacharyya, S. N. & Filipowicz, W. Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol. 17, 118–126 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Berezikov, E. et al. Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120, 21–24 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Schmittgen, T. D. et al. Real-time PCR quantification of precursor and mature microRNA. Methods 44, 31–38 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Leite, K. R. et al. miRNA analysis of prostate cancer by quantitative real time PCR: comparison between formalin-fixed paraffin embedded and fresh-frozen tissue. Urol. Oncol. doi: 10.1016/j.urolonc.2009.05.008.

  19. Calin, G. A. et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl Acad. Sci. USA 101, 2999–3004 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Volinia, S. et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl Acad. Sci. USA 103, 2257–2261 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Calin, G. A. & Croce, C. M. MicroRNA-cancer connection: the beginning of a new tale. Cancer Res. 66, 7390–7394 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Fabbri, M., Ivan, M., Cimmino, A., Negrini, M. & Calin, G. A. Regulatory mechanisms of microRNAs involvement in cancer. Expert Opin. Biol. Ther. 7, 1009–1019 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Boyerinas, B. et al. Identification of let-7-regulated oncofetal genes. Cancer Res. 68, 2587–2591 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Brueckner, B. et al. The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res. 67, 1419–1423 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Cowland, J. B., Hother, C. & Gronbaek, K. MicroRNAs and cancer. APMIS 115, 1090–1106 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Mitchell, P. S. et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl Acad. Sci. USA 105, 10513–10518 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lodes, M. J. et al. Detection of cancer with serum miRNAs on an oligonucleotide microarray. PLoS ONE 4, e6229 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Keller, A. et al. miRNAs in lung cancer—studying complex fingerprints in patient's blood cells by microarray experiments. BMC Cancer 9, 353 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hanke, M. et al. A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol. Oncol. doi:10.1016/j.urolonc.2009.01.027.

  31. Wang, V. & Wu, W. MicroRNA-based therapeutics for cancer. BioDrugs 23, 15–23 (2009).

    Article  PubMed  Google Scholar 

  32. Lu, Y. et al. A single anti-microRNA antisense oligodeoxyribonucleotide (AMO) targeting multiple microRNAs offers an improved approach for microRNA interference. Nucleic Acids Res. 37, e24 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Krutzfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 438, 685–689 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Fontana, L. et al. Antagomir-17-5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM. PLoS ONE 3, e2236 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ebert, M. S., Neilson, J. R. & Sharp, P. A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat. Methods 4, 721–726 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Sayed, D. et al. MicroRNA-21 targets sprouty2 and promotes cellular outgrowths. Mol. Biol. Cell 19, 3272–3282 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Davalos, V. & Esteller, M. MicroRNAs and cancer epigenetics: a macrorevolution. Curr. Opin. Oncol. 22, 35–45 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Saito, Y. et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9, 435–443 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Lee, C. Y., Rennie, P. S. & Jia, W. W. MicroRNA regulation of oncolytic herpes simplex virus-1 for selective killing of prostate cancer cells. Clin. Cancer Res. 15, 5126–5135 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Josson, S., Sung, S. Y., Lao, K., Chung, L. W. & Johnstone, P. A. Radiation modulation of microRNA in prostate cancer cell lines. Prostate 68, 1599–1606 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Porkka, K. P. et al. MicroRNA expression profiling in prostate cancer. Cancer Res. 67, 6130–6135 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Ozen, M., Creighton, C. J., Ozdemir, M. & Ittmann, M. Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 27, 1788–1793 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Ambs, S. et al. Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res. 68, 6162–6170 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schaefer, A. et al. Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int. J. Cancer 126, 1166–1176 (2010).

    CAS  PubMed  Google Scholar 

  45. Tong, A. W. et al. MicroRNA profile analysis of human prostate cancers. Cancer Gene Ther. 16, 206–216 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Spahn, M. et al. Expression of microRNA-221 is progressively reduced in aggressive prostate cancer and metastasis and predicts clinical recurrence. Int. J. Cancer doi:10.1002/ijc.24715.

  47. Lin, S. L., Chiang, A., Chang, D. & Ying, S. Y. Loss of mir-146a function in hormone-refractory prostate cancer. RNA 14, 417–424 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Prueitt, R. L. et al. Expression of microRNAs and protein-coding genes associated with perineural invasion in prostate cancer. Prostate 68, 1152–1164 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Leite, K. R. et al. Change in expression of miR-let7c, miR-100, and miR-218 from high grade localized prostate cancer to metastasis. Urol. Oncol. doi:10.1016/j.urolonc.2009.02.002.

  50. Mattie, M. D. et al. Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol. Cancer 5, 24 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shi, X. B. et al. An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proc. Natl Acad. Sci. USA 104, 19983–19988 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  52. DeVere White, R. W., Vinall, R. L., Tepper, C. G. & Shi, X. B. MicroRNAs and their potential for translation in prostate cancer. Urol. Oncol. 27, 307–311 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee, Y. S., Kim, H. K., Chung, S., Kim, K. S. & Dutta, A. Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. J. Biol. Chem. 280, 16635–16641 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Sun, T. et al. The role of microRNA-221 and microRNA-222 in androgen-independent prostate cancer cell lines. Cancer Res. 69, 3356–3363 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Galardi, S. et al. miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J. Biol. Chem. 282, 23716–23724 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Mercatelli, N. et al. The inhibition of the highly expressed miR-221 and miR-222 impairs the growth of prostate carcinoma xenografts in mice. PLoS ONE 3, e4029 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ribas, J. et al. miR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth. Cancer Res. 69, 7165–7169 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li, T., Li, D., Sha, J., Sun, P. & Huang, Y. MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem. Biophys. Res. Commun. 383, 280–285 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Qin, W. et al. BMPRII is a direct target of miR-21. Acta Biochim. Biophys. Sin. (Shanghai) 41, 618–623 (2009).

    Article  CAS  Google Scholar 

  60. Lu, Z. et al. MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 27, 4373–4379 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Cimmino, A. et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl Acad. Sci. USA 102, 13944–13949 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bonci, D. et al. The miR-15a–miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat. Med. 14, 1271–1277 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Takeshita, F. et al. Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol. Ther. 18, 181–187 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Lee, K. H. et al. MicroRNA-330 acts as tumor suppressor and induces apoptosis of prostate cancer cells through E2F1-mediated suppression of Akt phosphorylation. Oncogene 28, 3360–3370 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Sylvestre, Y. et al. An E2F/miR-20a autoregulatory feedback loop. J. Biol. Chem. 282, 2135–2143 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Rokhlin, O. W. et al. MicroRNA-34 mediates AR-dependent p53-induced apoptosis in prostate cancer. Cancer Biol. Ther. 7, 1288–1296 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Fujita, Y. et al. Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells. Biochem. Biophys. Res. Commun. 377, 114–119 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Lodygin, D. et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle 7, 2591–2600 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Hugo, H. et al. Epithelial-mesenchymal and mesenchymal-epithelial transitions in carcinoma progression. J. Cell. Physiol. 213, 374–383 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Gandellini, P. et al. miR-205 exerts tumor-suppressive functions in human prostate through down-regulation of protein kinase Cε. Cancer Res. 69, 2287–2295 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Kong, D. et al. miR-200 regulates PDGF-D-mediated epithelial–mesenchymal transition, adhesion, and invasion of prostate cancer cells. Stem Cells 27, 1712–1721 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yang, K., Handorean, A. M. & Iczkowski, K. A. MicroRNAs 373 and 520c are downregulated in prostate cancer, suppress CD44 translation and enhance invasion of prostate cancer cells in vitro. Int. J. Clin. Exp. Pathol. 2, 361–369 (2009).

    CAS  PubMed  Google Scholar 

  73. Place, R. F., Li, L. C., Pookot, D., Noonan, E. J. & Dahiya, R. MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc. Natl Acad. Sci. USA 105, 1608–1613 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zhang, X. et al. MicroRNA-17-3p is a prostate tumor suppressor in vitro and in vivo, and is decreased in high grade prostate tumors analyzed by laser capture microdissection. Clin. Exp. Metastasis 26, 965–979 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Noonan, E. J. et al. miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene 28, 1714–1724 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Wedel, S. A. et al. New histone deacetylase inhibitors as potential therapeutic tools for advanced prostate carcinoma. J. Cell. Mol. Med. 12, 2457–2466 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Weichert, W. et al. Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy. Br. J. Cancer 98, 604–610 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Saito, Y. et al. Epigenetic therapy upregulates the tumor suppressor microRNA-126 and its host gene EGFL7 in human cancer cells. Biochem. Biophys. Res. Commun. 379, 726–731 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Varambally, S. et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322, 1695–1699 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gottardo, F. et al. Micro-RNA profiling in kidney and bladder cancers. Urol. Oncol. 25, 387–392 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Ichimi, T. et al. Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int. J. Cancer 125, 345–352 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Wang, G. et al. Up-regulation of microRNA in bladder tumor tissue is not common. Int. Urol. Nephrol. doi:10.1007/s11255-009-9584-3.

  83. Lin, T. et al. MicroRNA-143 as a tumor suppressor for bladder cancer. J. Urol. 181, 1372–1380 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Dyrskjot, L. et al. Genomic profiling of microRNAs in bladder cancer: miR-129 is associated with poor outcome and promotes cell death in vitro. Cancer Res. 69, 4851–4860 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Friedman, J. M. et al. The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Res. 69, 2623–2629 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Catto, J. W. et al. Distinct microRNA alterations characterize high- and low-grade bladder cancer. Cancer Res. 69, 8472–8481 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hockel, M. & Dornhofer, N. The hydra phenomenon of cancer: why tumors recur locally after microscopically complete resection. Cancer Res. 65, 2997–3002 (2005).

    Article  PubMed  Google Scholar 

  88. Baffa, R. et al. MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets. J. Pathol. 219, 214–221 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Veerla, S. et al. MiRNA expression in urothelial carcinomas: important roles of miR-10a, miR-222, miR-125b, miR-7 and miR-452 for tumor stage and metastasis, and frequent homozygous losses of miR-31. Int. J. Cancer 124, 2236–2242 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Neely, L. A. et al. A microRNA expression ratio defining the invasive phenotype in bladder tumors. Urol. Oncol. 28, 39–48 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Yang, H. et al. Evaluation of genetic variants in microRNA-related genes and risk of bladder cancer. Cancer Res. 68, 2530–2537 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Lamy, P. et al. Are microRNAs located in genomic regions associated with cancer? Br. J. Cancer 95, 1415–1418 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Aaboe, M. et al. SOX4 expression in bladder carcinoma: clinical aspects and in vitro functional characterization. Cancer Res. 66, 3434–3442 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Ostenfeld, M. S. et al. miR-145 induces caspase-dependent and -independent cell death in urothelial cancer cell lines with targeting of an expression signature present in Ta bladder tumors. Oncogene 29, 1073–1084 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Lu, Q. et al. MicroRNA-221 silencing predisposed human bladder cancer cells to undergo apoptosis induced by TRAIL. Urol. Oncol. doi:10.1016/j.urolonc.2009.06.005.

  96. Adam, L. et al. miR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance to epidermal growth factor receptor therapy. Clin. Cancer Res. 15, 5060–5072 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Huang, Y. et al. Microarray analysis of microRNA expression in renal clear cell carcinoma. Eur. J. Surg. Oncol. 35, 1119–1123 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Nakada, C. et al. Genome-wide microRNA expression profiling in renal cell carcinoma: significant down-regulation of miR-141 and miR-200c. J. Pathol. 216, 418–427 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Jung, M. et al. MicroRNA profiling of clear cell renal cell cancer identifies a robust signature to define renal malignancy. J. Cell. Mol. Med. 13, 3918–3928 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Chow, T. F. et al. Differential expression profiling of microRNAs and their potential involvement in renal cell carcinoma pathogenesis. Clin. Biochem. 43, 150–158 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Kort, E. J. et al. The E2F3–Oncomir-1 axis is activated in Wilms' tumor. Cancer Res. 68, 4034–4038 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chow, T. F. et al. The miR-17–92 cluster is over expressed in and has an oncogenic effect on renal cell carcinoma. J. Urol. 183, 743–751 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Petillo, D. et al. MicroRNA profiling of human kidney cancer subtypes. Int. J. Oncol. 35, 109–114 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Horikawa, Y. et al. Single nucleotide polymorphisms of microRNA machinery genes modify the risk of renal cell carcinoma. Clin. Cancer Res. 14, 7956–7962 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Drake, K. M. et al. Loss of heterozygosity at 2q37 in sporadic Wilms' tumor: putative role for miR-562. Clin. Cancer Res. 15, 5985–5992 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Dutta, K. K. et al. Association of microRNA-34a overexpression with proliferation is cell type-dependent. Cancer Sci. 98, 1845–1852 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Sinha, S., Dutta, S., Datta, K., Ghosh, A. K. & Mukhopadhyay, D. Von Hippel–Lindau gene product modulates TIS11B expression in renal cell carcinoma: impact on vascular endothelial growth factor expression in hypoxia. J. Biol. Chem. 284, 32610–32618 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gillis, A. J. et al. High-throughput microRNAome analysis in human germ cell tumours. J. Pathol. 213, 319–328 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Looijenga, L. H., Gillis, A. J., Stoop, H., Hersmus, R. & Oosterhuis, J. W. Relevance of microRNAs in normal and malignant development, including human testicular germ cell tumours. Int. J. Androl. 30, 304–314 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Voorhoeve, P. M. et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124, 1169–1181 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Novotny, G. W. et al. Analysis of gene expression in normal and neoplastic human testis: new roles of RNA. Int. J. Androl. 30, 316–326 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Jung.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Deregulated miRNAs and their function in prostate cancer (DOC 270 kb)

Supplementary Table 2

Deregulated miRNAs and their function in bladder cancer (DOC 186 kb)

Supplementary Table 3

Deregulated miRNAs and their function in renal cell carcinoma (DOC 130 kb)

Supplementary Table 4

Deregulated miRNAs and their function in Germ Cell Tumors (DOC 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaefer, A., Stephan, C., Busch, J. et al. Diagnostic, prognostic and therapeutic implications of microRNAs in urologic tumors. Nat Rev Urol 7, 286–297 (2010). https://doi.org/10.1038/nrurol.2010.45

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2010.45

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer