Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Prevalence and treatment of LUTS in patients with Parkinson disease or multiple system atrophy

Key Points

  • Patients with Parkinson disease or multiple system atrophy (MSA) often have lower urinary tract symptoms such as urinary frequency and urinary incontinence

  • Antimuscarinic drugs are often used in patients with storage symptoms; however, these drugs might have adverse effects such as constipation, dry mouth and cognitive deterioration

  • Voiding difficulties owing to functional and/or mechanical outlet obstruction are also observed in both groups of patients

  • Conservative therapies for those with voiding dysfunctions include the administration of α-adrenoceptor antagonists, such as tamsulosin

  • Men with MSA often undergo surgical resection of the prostate owing to misdiagnosis as BPH; however this surgery is often ineffective owing to detrusor underactivity

Abstract

The lower urinary tract is controlled by complex neural mechanisms not only in the periphery, but also in the central nervous systems (CNS). Thus, patients with a wide variety of neurological diseases often also have lower urinary tract symptoms (LUTS), including those with Parkinson disease (PD) or multiple system atrophy (MSA). LUTS are common comorbidities associated with both of these neurodegenerative diseases and are likely to impair patients' quality of life. The motor symptoms of PD and MSA often seem similar; however, the pathophysiology, and thus the treatment of LUTS differs considerably. Antimuscarinics are the first-line treatment of storage LUTS in patients with PD or MSA; however, care should be taken in the management of these patients, especially in those with MSA owing to the high risk of inefficient voiding, and thus an increased post-void residual volume. Other treatments of PD-related LUTS include α-adrenoceptor antagonists, which improve voiding dysfunction, transurethral resection of the prostate for bladder outlet obstruction owing to prostate enlargement, and neuromodulation and intradetrusor botulinum toxin injections for storage LUTS. However, more conservative treatments, including intermittent catheterization, are required for LUTS in patients with MSA, owing to the high incidence of impaired detrusor contractility and detrusor–sphincter dyssynergia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neural circuitry relevant to micturition in Parkinson disease (PD) or multiple system atrophy (MSA).
Figure 2: Management of lower urinary tract symptoms (LUTS) in patients with Parkinson disease (PD), multiple system atrophy (MSA) and related disorders.

Similar content being viewed by others

References

  1. Flowers, K. A. Visual “closed-loop” and “open-loop” characteristics of voluntary movement in patients with Parkinsonism and intention tremor. Brain 99, 269–310 (1976).

    Article  CAS  PubMed  Google Scholar 

  2. Evarts, E. V., Teravainen, H. & Calne, D. B. Reaction time in Parkinson's disease. Brain 104, 167–186 (1981).

    Article  CAS  PubMed  Google Scholar 

  3. Sakakibara, R. et al. Pathophysiology of bladder dysfunction in Parkinson's disease. Neurobiol. Dis. 46, 565–571 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Sakakibara, R. et al. Urinary dysfunction and orthostatic hypotension in multiple system atrophy: which is the more common and earlier manifestation? Journal of Neurology, Neurosurgery, and Psychiatry 68, 65–69 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yamamoto, T. et al. Questionnaire-based assessment of pelvic organ dysfunction in multiple system atrophy. Mov. Disord. 24, 972–978 (2009).

    Article  PubMed  Google Scholar 

  6. de Groat, W. C., Griffiths, D. & Yoshimura, N. Neural control of the lower urinary tract. Compr. Physiol. 5, 327–396 (2015).

    PubMed  PubMed Central  Google Scholar 

  7. Lees, A. J., Hardy, J. & Revesz, T. Parkinson's disease. Lancet 373, 2055–2066 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Sakakibara, R. et al. SPECT imaging of the dopamine transporter with [(123)I]-beta-CIT reveals marked decline of nigrostriatal dopaminergic function in Parkinson's disease with urinary dysfunction. J. Neurol. Sci. 187, 55–59 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Winge, K. & Fowler, C. J. Bladder dysfunction in Parkinsonism: mechanisms, prevalence, symptoms, and management. Mov. Disord. 21, 737–745 (2006).

    Article  PubMed  Google Scholar 

  10. Kitta, T. et al. Brain activation during detrusor overactivity in patients with Parkinson's disease: a positron emission tomography study. J. Urol. 175, 994–998 (2006).

    Article  PubMed  Google Scholar 

  11. Yoshimura, N., Sasa, M., yoshida, O. & Takaori, S. Dopamine D1 receptor-mediated inhibition of micturition reflex by central dopamine from the substantia nigra. Neurourol. Urodynam. 11, 535–545 (1992).

    Article  CAS  Google Scholar 

  12. Yamamoto, T. et al. Striatal dopamine level increases in the urinary storage phase in cats: an in vivo microdialysis study. Neuroscience 135, 299–303 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Albanease, A., Jenner, P., Marsden, C. D. & Stephenson, J. D. Bladder hyperreflexia induced in marmosets by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurosci. Lett. 87, 46–50 (1988).

    Article  Google Scholar 

  14. Yoshimura, N., Mizuta, E., Kuno, S., Sasa, M. & Yoshida, O. The dopamine D1 receptor agonist SKF 38393 suppresses detrusor hyperreflexia in the monkey with parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Neuropharmacology 32, 315–321 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Yoshimura, N., Mizuta, E., Yoshida, O. & Kuno, S. Therapeutic effects of dopamine D1/D2 receptor agonists on detrusor hyperreflexia in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned parkinsonian cynomolgus monkeys. J. Pharmacol. Exp. Ther. 286, 228–233 (1998).

    CAS  PubMed  Google Scholar 

  16. Yoshimura, N., Kuno, S., Chancellor, M. B., de Groat, W. C. & Seki, S. Dopaminergic mechanisms underlying bladder hyperactivity in rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion of the nigrostriatal pathway. Br. J. Pharmacol. 139, 1425–1432 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Buddhala, C. et al. Dopaminergic, serotonergic, and noradrenergic deficits in Parkinson disease. Ann. Clin. Transl. Neurol. 2, 949–959 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Graham, J. G. & Oppenheimer, D. R. Orthostatic hypotension and nicotine sensitivity in a case of multiple system atrophy. J. Neurol. Neurosurg. Psychiatry 32, 28–34 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Papp, M. I., Kahn, J. E. & Lantos, P. L. Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy-Drager syndrome). J. Neurol. Sci. 94, 79–100 (1989).

    Article  CAS  PubMed  Google Scholar 

  20. Ahmed, Z. et al. The neuropathology, pathophysiology and genetics of multiple system atrophy. Neuropathol. Appl. Neurobiol. 38, 4–24 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Rao, S. S., Hofmann, L. A. & Shakil, A. Parkinson's disease: diagnosis and treatment. Am. Fam. Physician 74, 2046–2054 (2006).

    PubMed  Google Scholar 

  22. Boudes, M. et al. Bladder dysfunction in a transgenic mouse model of multiple system atrophy. Mov. Disord. 28, 347–355 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Araki, I. & Kuno, S. Assessment of voiding dysfunction in Parkinson's disease by the international prostate symptom score. J. Neurol. Neurosurg. Psychiatry 68, 429–433 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lemack, G. E. et al. Questionnaire-based assessment of bladder dysfunction in patients with mild to moderate Parkinson's disease. Urology 56, 250–254 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Campos-Sousa, R. N. et al. Urinary symptoms in Parkinson's disease: prevalence and associated factors. Arq. Neuropsiquiatr. 61, 359–363 (2003).

    Article  PubMed  Google Scholar 

  26. Pavlakis, A. J., Siroky, M. B., Goldstein, I. & Krane, R. J. Neurologic findings in Parkinson's disease. J. Urol. 129, 80–83 (1983).

    Article  CAS  PubMed  Google Scholar 

  27. Fitzmaurice, H. et al. Micturition disturbance in Parkinson's disease. Br. J. Urol. 57, 652–656 (1985).

    Article  CAS  PubMed  Google Scholar 

  28. Chandiramani, V. A., Palace, J. & Fowler, C. J. How to recognize patients with parkinsonism who should not have urological surgery. Br. J. Urol. 80, 100–104 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Bonnet, A. M. et al. Urinary disturbances in striatonigral degeneration and Parkinson's disease: clinical and urodynamic aspects. Mov. Disord. 12, 509–513 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Defreitas, G. A. et al. Distinguishing neurogenic from non-neurogenic detrusor overactivity: a urodynamic assessment of lower urinary tract symptoms in patients with and without Parkinson's disease. Urology 62, 651–655 (2003).

    Article  PubMed  Google Scholar 

  31. Romain, J., Torny, F., Dumas, J. P., Game, X. & Descazeaud, A. Is nocturnal polyuria more frequent among patients with Parkinson's disease? Prog. Urol. 25, 312–317 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Winge, K., Skau, A. M., Stimpel, H., Nielsen, K. K. & Werdelin, L. Prevalence of bladder dysfunction in Parkinsons disease. Neurourol.Urodyn. 25, 116–122 (2006).

    Article  PubMed  Google Scholar 

  33. Christmas, T. J. et al. Role of subcutaneous apomorphine in parkinsonian voiding dysfunction. Lancet 2, 1451–1453 (1988).

    Article  CAS  PubMed  Google Scholar 

  34. Sakakibara, R., Hattori, T., Uchiyama, T. & Yamanishi, T. Videourodynamic and sphincter motor unit potential analyses in Parkinson's disease and multiple system atrophy. J. Neurol. Neurosurg. Psychiatry 71, 600–606 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Khan, Z., Starer, P. & Bhola, A. Urinary incontinence in female Parkinson disease patients. Pitfalls of diagnosis. Urology 33, 486–489 (1989).

    Article  CAS  PubMed  Google Scholar 

  36. Gray, R., Stern, G. & Malone-Lee, J. Lower urinary tract dysfunction in Parkinson's disease: changes relate to age and not disease. Age Ageing 24, 499–504 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Stocchi, F. et al. Urodynamic and neurophysiological evaluation in Parkinson's disease and multiple system atrophy. J. Neurol. Neurosurg. Psychiatry 62, 507–511 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Myers, D. L., Arya, L. A. & Friedman, J. H. Is urinary incontinence different in women with Parkinson's disease? Int. Urogynecol J. Pelvic Floor Dysfunct 10, 188–191 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Ogawa, T. et al. Dopaminergic mechanisms controlling urethral function in rats. Neurourol. Urodyn. 25, 480–489 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Aarsland, D. & Kurz, M. W. The epidemiology of dementia associated with Parkinson disease. J. Neurol. Sci. 289, 18–22 (2010).

    Article  PubMed  Google Scholar 

  41. Aarsland, D., Zaccai, J. & Brayne, C. A systematic review of prevalence studies of dementia in Parkinson's disease. Mov. Disord. 20, 1255–1263 (2005).

    Article  PubMed  Google Scholar 

  42. Sakakibara, R. et al. Lower urinary tract function in dementia of Lewy body type. Journal of Neurology, Neurosurgery, and Psychiatry 76, 729–732 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tateno, F. et al. Lower urinary tract function in dementia with Lewy bodies (DLB). Movement disorders: official journal of the Movement Disorder Society 30, 411–415 (2015).

    Article  Google Scholar 

  44. Ransmayr, G. N. et al. Lower urinary tract symptoms in dementia with Lewy bodies, Parkinson disease, and Alzheimer disease. Neurology 70, 299–303 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Bower, J. H., Maraganore, D. M., McDonnell, S. K. & Rocca, W. A. Incidence of progressive supranuclear palsy and multiple system atrophy in Olmsted County, Minnesota, 1976 to 1990. Neurology 49, 1284–1288 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Sakakibara, R. et al. Amezinium metilsulfate, a sympathomimetic agent, may increase the risk of urinary retention in multiple system atrophy. Clin. Auton. Res. 13, 51–53 (2003).

    Article  PubMed  Google Scholar 

  47. Colosimo, C. Nonmotor presentations of multiple system atrophy. Nat. Rev. Neurol. 7, 295–298 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Gilman, S. et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology 71, 670–676 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wenning, G. K., Ben Shlomo, Y., Magalhaes, M., Daniel, S. E. & Quinn, N. P. Clinical features and natural history of multiple system atrophy. An analysis of 100 cases. Brain 117, 835–845 (1994).

    Article  PubMed  Google Scholar 

  50. Gilman, S. et al. The North American Multiple System Atrophy Study Group. J. Neural Transm. 112, 1687–1694 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Abrams, P. et al. The standardisation of terminology of lower urinary tract function: report from the Standardisation Sub-committee of the International Continence Society. Neurourol. Urodyn. 21, 167–178 (2002).

    Article  PubMed  Google Scholar 

  52. Kirchhof, K., Apostolidis, A. N., Mathias, C. J. & Fowler, C. J. Erectile and urinary dysfunction may be the presenting features in patients with multiple system atrophy: a retrospective study. Int. J. Impot Res. 15, 293–298 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Sakakibara, R., Panicker, J., Finazzi-Agro, E., Iacovelli, V. & Bruschini, H. A guideline for the management of bladder dysfunction in Parkinson's disease and other gait disorders. Neurourol. Urodyn. 5, 551–563 (2015).

    Google Scholar 

  54. Groen, J. et al. Summary of European Association of Urology (EAU) Guidelines on Neuro-Urology. Eur. Urol. 69, 324–333 (2016).

    Article  PubMed  Google Scholar 

  55. Benson, G. S., Raezer, D. M., Anderson, J. R., Saunders, C. D. & Corriere, J. N. Jr. Effect of levodopa on urinary bladder. Urology 7, 24–28 (1976).

    Article  CAS  PubMed  Google Scholar 

  56. Aranda, B. & Cramer, P. Effects of apomorphine and L-dopa on the parkinsonian bladder. Neurourol. Urodyn. 12, 203–209 (1993).

    Article  CAS  PubMed  Google Scholar 

  57. Uchiyama, T., Sakakibara, R., Hattori, T. & Yamanishi, T. Short-term effect of a single levodopa dose on micturition disturbance in Parkinson's disease patients with the wearing-off phenomenon. Mov. Disord. 18, 573–578 (2003).

    Article  PubMed  Google Scholar 

  58. Brusa, L. et al. Central acute D2 stimulation worsens bladder function in patients with mild Parkinson's disease. J. Urol. 175, 202–206 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Sakakibara, R. et al. Bladder function of patients with Parkinson's disease. Int. J. Urol. 21, 638–646 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Uchiyama, T. et al. Comparing bromocriptine effects with levodopa effects on bladder function in Parkinson's disease. Mov. Disord. 24, 2386–2390 (2009).

    PubMed  Google Scholar 

  61. Kuno, S., Mizuta, E., Yamasaki, S. & Araki, I. Effects of pergolide on nocturia in Parkinson's disease: three female cases selected from over 400 patients. Parkinsonism Relat. Disord. 10, 181–187 (2004).

    Article  PubMed  Google Scholar 

  62. Brusa, L. et al. Rasagiline effect on bladder disturbances in early mild Parkinson's disease patients. Parkinsonism Relat. Disord. 20, 931–932 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Katzenschlager, R., Sampaio, C., Costa, J. & Lees, A. Anticholinergics for symptomatic management of Parkinson's disease. Cochrane Database Syst Rev, 2, CD003735 (2003).

    Google Scholar 

  64. Palleschi, G. et al. Correlation between the Overactive Bladder questionnaire (OAB-q) and urodynamic data of Parkinson disease patients affected by neurogenic detrusor overactivity during antimuscarinic treatment. Clin. Neuropharmacol. 29, 220–229 (2006).

    Article  PubMed  Google Scholar 

  65. Zesiewics, T. A. et al. Randomized, controlled pilot trial of solifenacin succinate for overactive bladder in Parkinson's disease: Parkinsonism Relat. Disord. 21, 514–520 (2015)

    Article  Google Scholar 

  66. Sakakibara, R. et al. Questionnaire-based assessment of pelvic organ dysfunction in Parkinson's disease. Auton. Neurosci. 92, 76–85 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. de Smet, Y. et al. Confusion, dementia and anticholinergics in Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 45, 1161–1164 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kessler, T. M. et al. Adverse event assessment of antimuscarinics for treating overactive bladder: a network meta-analytic approach. PLoS ONE 6, e16718 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Robinson, D. & Cardozo, L. Antimuscarinic drugs to treat overactive bladder. BMJ 344, e2130 (2012).

    Article  PubMed  CAS  Google Scholar 

  70. Kulaksizoglu, H. & Parman, Y. Use of botulinim toxin-A for the treatment of overactive bladder symptoms in patients with Parkinsons's disease. Parkinsonism Relat. Disord. 16, 531–534 (2010).

    Article  PubMed  Google Scholar 

  71. Giannantoni, A. et al. Botulinum toxin A for overactive bladder and detrusor muscle overactivity in patients with Parkinson's disease and multiple system atrophy. J. Urol. 182, 1453–1457 (2009).

    Article  PubMed  Google Scholar 

  72. Department of Health & Human Services, U. S. U. S. Food & Drug administration http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm269509.htm (2011).

  73. Mathias, C. J., Fosbraey, P., da Costa, D. F., Thornley, A. & Bannister, R. The effect of desmopressin on nocturnal polyuria, overnight weight loss, and morning postural hypotension in patients with autonomic failure. Br. Med. J. 293, 353–354 (1986).

    Article  CAS  Google Scholar 

  74. Sakakibara, R. et al. The effect of intranasal desmopressin on nocturnal waking in urination in multiple system atrophy patients with nocturnal polyuria. Clin. Auton. Res. 13, 106–108 (2003).

    Article  PubMed  Google Scholar 

  75. Sakakibara, R. et al. Are alpha-blockers involved in lower urinary tract dysfunction in multiple system atrophy? A comparison of prazosin and moxisylyte. J. Auton. Nerv. Syst. 79, 191–195 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Ito, T. et al. Incomplete emptying and urinary retention in multiple-system atrophy: when does it occur and how do we manage it? Mov. Disord. 21, 816–823 (2006).

    Article  PubMed  Google Scholar 

  77. Schwinn, D. A. Novel role for alpha1-adrenergic receptor subtypes in lower urinary tract symptoms. BJU international 86, 11–20 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Yamanishi, T. et al. Combination of a cholinergic drug and an alpha-blocker is more effective than monotherapy for the treatment of voiding difficulty in patients with underactive detrusor. Int. J. Urol. 11, 88–96 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Sandroni, P., Opfer-Gehrking, T. L., Singer, W. & Low, P. A. Pyridostigmine for treatment of neurogenic orthostatic hypotension [correction of hypertension]—a follow-up survey study. Clin. Auton. Res. 15, 51–53 (2005).

    Article  PubMed  Google Scholar 

  80. Yamamoto, T. et al. Pyridostigmine in autonomic failure: can we treat postural hypotension and bladder dysfunction with one drug? Clin. Auton. Res. 16, 296–298 (2006).

    Article  PubMed  Google Scholar 

  81. Takahashi, M. et al. [Acute respiratory failure associated with cholinergic crisis: report of five cases and review of the literature]. Nihon Kokyuki Gakkai Zasshi. 49, 877–884 (2011).

    PubMed  Google Scholar 

  82. Dostrovsky, J. O. & Lozano, A. M. Mechanisms of deep brain stimulation. Mov. Disord. 17, S63–68 (2002).

    Article  PubMed  Google Scholar 

  83. Finazzi-Agro, E. et al. Effects of subthalamic nucleus stimulation on urodynamic findings in patients with Parkinson's disease. J. Urol. 169, 1388–1391 (2003).

    Article  PubMed  Google Scholar 

  84. Seif, C. et al. Effect of subthalamic deep brain stimulation on the function of the urinary bladder. Ann. Neurol. 55, 118–120 (2004).

    Article  PubMed  Google Scholar 

  85. Herzog, J. et al. Subthalamic stimulation modulates cortical control of urinary bladder in Parkinson's disease. Brain 129, 3366–3375 (2006).

    Article  PubMed  Google Scholar 

  86. Sakakibara, R. et al. Effects of subthalamic nucleus stimulation on the micturation reflex in cats. Neuroscience 120, 871–875 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Dalmose, A. L., Bjarkam, C. R., Sorensen, J. C., Djurhuus, J. C. & Jorgensen, T. M. Effects of high frequency deep brain stimulation on urine storage and voiding function in conscious minipigs. Neurourol. Urodyn. 23, 265–272 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Perissinotto, M. C., D'Ancona, C. A., Lucio, A., Campos, R. M. & Abreu, A. Transcutaneous tibial nerve stimulation in the treatment of lower urinary tract symptoms and its impact on health-related quality of life in patients with Parkinson disease: a randomized controlled trial. J. Wound Ostomy Continence Nurs. 42, 94–99 (2015).

    Article  PubMed  Google Scholar 

  89. Kabay, S. et al. The Clinical and Urodynamic Results of Percutaneous Posterior Tibial Nerve Stimulation on Neurogenic Detrusor Overactivity in Patients With Parkinson's Disease. Urology 87, 76–81 (2016).

    Article  PubMed  Google Scholar 

  90. Rassweiler, J. et al.Complications of transurethral resection of the prostate (TURP)—incidence, management, and prevention. Eur Urol 50, 969–979 (2006).

    Article  PubMed  Google Scholar 

  91. Staskin, D. S., Vardi, Y. & Siroky, M. B. Post-prostatectomy continence in the parkinsonian patient: the significance of poor voluntary sphincter control. J. Urol. 140, 117–118 (1988).

    Article  CAS  PubMed  Google Scholar 

  92. Fowler, C. J. Urinary disorders in Parkinson's disease and multiple system atrophy. Funct. Neurol. 16, 277–282 (2001).

    CAS  PubMed  Google Scholar 

  93. Quinn, N. Parkinsonism—recognition and differential diagnosis. BMJ 310, 447–452 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Roth, B., Studer, U. E., Fowler, C. J. & Kessler, T. M. Benign prostatic obstruction and parkinson's disease—should transurethral resection of the prostate be avoided? J. Urol. 181, 2209–2213 (2009).

    Article  PubMed  Google Scholar 

  95. Pinna, A., Wardas, J., Simola, N. & Morelli, M. New therapies for the treatment of Parkinson's disease: adenosine A2A receptor antagonists. Life Sci. 77, 3259–3267 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Schwarzschild, M. A., Agnati, L., Fuxe, K., Chen, J. F. & Morelli, M. Targeting adenosine A2A receptors in Parkinson's disease. Trends Neurosci. 29, 647–654 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Mizuno, Y. et al. Adenosine A2A receptor antagonist istradefylline reduces daily OFF time in Parkinson's disease. Mov. Disord. 28, 1138–1141 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kitta, T. et al. Suppression of bladder overactivity by adenosine A2A receptor antagonist in a rat model of Parkinson disease. J. Urol. 187, 1890–1897 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Kitta, T. et al. Clinical efficacy of istradefylline on lower urinary tract symptoms in Parkinson's disease. Int. J. Urol. 23, 893–894.

    Article  CAS  PubMed  Google Scholar 

  100. Zhu, C. et al. Adenosine A2A receptor antagonist istradefylline 20 versus 40 mg/day as augmentation for Parkinson's disease: a meta-analysis. Neurol. Res. 36, 1028–1034 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Hegarty, S. V., Sullivan, A. M. & O'Keeffe, G. W. Midbrain dopaminergic neurons: a review of the molecular circuitry that regulates their development. Dev. Biol. 379, 123–138 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Lindvall, O. Developing dopaminergic cell therapy for Parkinson's disease—give up or move forward? Mov. Disord. 28, 268–273 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Nishimura, K. & Takahashi, J. Therapeutic application of stem cell technology toward the treatment of Parkinson's disease. Biol. Pharm. Bull. 36, 171–175 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Soler, R. et al. Stem cell therapy ameliorates bladder dysfunction in an animal model of Parkinson disease. J. Urol. 187, 1491–1497 (2012).

    Article  PubMed  Google Scholar 

  105. Wenning, G. K. et al. The natural history of multiple system atrophy: a prospective European cohort study. Lancet Neurol. 12, 264–274 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

N.Y. gratefully acknowledges research support from the US National Institutes of Health (DK088836 and P01DK093424) and the US Department of Defense (W81XWH-12-1-0565).

Author information

Authors and Affiliations

Authors

Contributions

R.S. and N.Y. researched data for this article. All authors made a substantial contribution to discussions of content. T.O., R.S., and N.Y. wrote the manuscript and T.K. and O.I. edited and/or reviewed the manuscript before submission.

Corresponding author

Correspondence to Naoki Yoshimura.

Ethics declarations

Competing interests

N.Y. has received research funding from Astellas, GSK and Ono. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogawa, T., Sakakibara, R., Kuno, S. et al. Prevalence and treatment of LUTS in patients with Parkinson disease or multiple system atrophy. Nat Rev Urol 14, 79–89 (2017). https://doi.org/10.1038/nrurol.2016.254

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2016.254

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing