Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Low-intensity shockwave therapy for erectile dysfunction: is the evidence strong enough?

Key Points

  • Low-intensity extracorporeal shockwave therapy (Li-ESWT) has emerged and rapidly gained popularity as a treatment option for men with erectile dysfunction (ED)

  • The mechanisms by which this therapy enhances erectile function are unclear, but hypotheses include stimulation of neoangiogenesis, recruitment of stem cells and Schwann cell activation leading to nerve regeneration

  • Single-arm trials almost unanimously show beneficial effects in patients with vasculogenic ED, even in those who do not respond to phosphodiesterase-5 inhibitors

  • Randomized controlled trials (RCTs) have produced conflicting results, and have evaluated erectile function only a short time after treatment; several RCTs are highly biased

  • Meta-analyses and systematic reviews conclude that shockwave therapy has an effect, but these analyses are limited by the fact that biased RCTs have been included in these analyses, and some fail to recognize this limitation

  • Thus, no high-quality level 1a evidence is available and level 1b evidence is conflicting regarding the use of Li-ESWT for ED treatment

Abstract

Erectile dysfunction (ED) affects 30% of all men above the age of 40 years and its prevalence steadily increases with age. Current nonsurgical treatment options, including phosphodiesterase type 5 inhibitors (PDE5I), provide temporary relief but have failed to provide a permanent improvement of the condition. Low-intensity extracorporeal shockwave therapy (Li-ESWT) is noninvasive and uses acoustic waves, which can pass through tissue and be focussed to target specific areas or organs to induce the desired effects. The use of Li-ESWT has previously been described in other disease contexts, such as ischaemic heart disease, bone fractures, and burns, in which it improves neoangiogenesis; similar principles seem to apply in the erectile tissue. The major potential advantage of the treatment, therefore, is the possibility to restore natural erectile function. Thus, Li-ESWT is the only currently marketed treatment for ED that might offer a cure, which is the most desired outcome for most men with ED. Li-ESWT has also been suggested to improve the effect of PDE5I in nonresponders, reducing the need for more invasive treatments. Several single-arm trials have shown benefit of Li-ESWT on patient-reported erectile function scores, but data from randomized trials are conflicting, and many questions remain to be answered before we can routinely offer this treatment to patients. Thus, the search for the true clinical value of Li-ESWT for ED represents a dynamic and continuing field of enquiry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic depiction of a shockwave as used in the treatment of erectile dysfunction.
Figure 2: Putative mechanisms of action of shockwave therapy for ED.
Figure 3: Focussed and linear shockwave therapy.

Similar content being viewed by others

References

  1. Hatzimouratidis, K. et al. Guidelines on male sexual dysfunction: erectile dysfunction and premature ejaculation. Eur. Urol. 57, 804–814 (2010).

    Article  PubMed  Google Scholar 

  2. Latini, D. M. et al. Psychological impact of erectile dysfunction: validation of a new health related quality of life measure for patients with erectile dysfunction. J. Urol. 168, 2086–2091 (2002).

    Article  PubMed  Google Scholar 

  3. Hanson-Divers, C., Jackson, S. E., Lue, T. F., Crawford, S. Y. & Rosen, R. C. Health outcomes variables important to patients in the treatment of erectile dysfunction. J. Urol. 159, 1541–1547 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Vardi, Y., Appel, B., Jacob, G., Massarwi, O. & Gruenwald, I. Can low-intensity extracorporeal shockwave therapy improve erectile function? A 6-month follow-up pilot study in patients with organic erectile dysfunction. Eur. Urol. 58, 243–248 (2010).

    Article  PubMed  Google Scholar 

  5. Gruenwald, I., Kitrey, N. D., Appel, B. & Vardi, Y. Low-intensity extracorporeal shock wave therapy in vascular disease and erectile dysfunction: theory and outcomes. Sexual Med. Rev. 1, 83–90 (2013).

    Article  Google Scholar 

  6. Assaly-Kaddoum, R. et al. Low intensity extracorporeal shock wave therapy improves erectile function in a model of type II diabetes independently of NO/cGMP pathway. J. Urol. 196, 950–956 (2016).

    Article  PubMed  Google Scholar 

  7. Gruenwald, I., Appel, B. & Vardi, Y. Low-intensity extracorporeal shock wave therapy — a novel effective treatment for erectile dysfunction in severe ED patients who respond poorly to PDE5 inhibitor therapy. J. Sex. Med. 9, 259–264 (2012).

    Article  PubMed  Google Scholar 

  8. Kitrey, N. D. et al. Penile low intensity shock wave treatment is able to shift PDE5i nonresponders to responders: a double-blind, sham controlled study. J. Urol. 195, 1550–1555 (2016).

    Article  PubMed  Google Scholar 

  9. Cleveland, R. O. & McAteer, J. A. in Smith's Textbook of Endourology (eds Smith A. D., Preminger G., Badlani G. & Kavoussi L. R.) 527–558 (Wiley-Blackwell, 2012)

    Book  Google Scholar 

  10. Bongrazio, M. et al. Shear stress modulates the expression of thrombospondin-1 and CD36 in endothelial cells in vitro and during shear stress-induced angiogenesis in vivo. Int. J. Immunopathol. Pharmacol. 19, 35–48 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Belik, D. et al. Endothelium-derived microparticles from chronically thromboembolic pulmonary hypertensive patients facilitate endothelial angiogenesis. J. Biomed. Sci. 23, 462 (2016).

    Article  CAS  Google Scholar 

  12. Young, S. R. & Dyson, M. The effect of therapeutic ultrasound on angiogenesis. Ultrasound Med. Biol. 16, 261–269 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Goertz, O. et al. Extracorporeal shock waves improve angiogenesis after full thickness burn. Burns 38, 1010–1018 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Nishida, T. et al. Extracorporeal cardiac shock wave therapy markedly ameliorates ischemia-induced myocardial dysfunction in pigs in vivo. Circulation 110, 3055–3061 (2004).

    Article  PubMed  Google Scholar 

  15. Aicher, A. et al. Low-energy shock wave for enhancing recruitment of endothelial progenitor cells: a new modality to increase efficacy of cell therapy in chronic hind limb ischemia. Circulation 114, 2823–2830 (2006).

    Article  PubMed  Google Scholar 

  16. Wang, C.-J. et al. Shock wave therapy induces neovascularization at the tendon-bone junction. A study in rabbits. J. Orthop. Res. 21, 984–989 (2003).

    Article  PubMed  Google Scholar 

  17. Chen, Y.-J. et al. Recruitment of mesenchymal stem cells and expression of TGF-β1 and VEGF in the early stage of shock wave-promoted bone regeneration of segmental defect in rats. J. Orthop. Res. 22, 526–534 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Kucia, M. et al. CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. J. Mol. Histol. 35, 233–245 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Fuchs, S., Dohle, E., Kolbe, M. & Kirkpatrick, C. J. Outgrowth endothelial cells: sources, characteristics and potential applications in tissue engineering and regenerative medicine. Adv. Biochem. Eng. Biotechnol. 123, 201–217 (2010).

    CAS  PubMed  Google Scholar 

  20. Seemann, O., Rassweiler, J., Chvapil, M., Alken, P. & Drach, G. W. The effect of single shock waves on the vascular system of artificially perfused rabbit kidneys. J. Stone Dis. 5, 172–178 (1993).

    CAS  PubMed  Google Scholar 

  21. Gotte, G. et al. Short-time non-enzymatic nitric oxide synthesis from L-arginine and hydrogen peroxide induced by shock waves treatment. FEBS Lett. 520, 153–155 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Huang, J.-J. et al. Angiogenesis effect of therapeutic ultrasound on HUVECs through activation of the PI3K-Akt-eNOS signal pathway. Am. J. Transl Res. 7, 1106–1115 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ciampa, A. R. et al. Nitric oxide mediates anti-inflammatory action of extracorporeal shock waves. FEBS Lett. 579, 6839–6845 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Hausner, T. et al. Improved rate of peripheral nerve regeneration induced by extracorporeal shock wave treatment in the rat. Exp. Neurol. 236, 363–370 (2012).

    Article  PubMed  Google Scholar 

  25. Schuh, C., Hausner T. & Redl H. R. A therapeutic shock propels Schwann cells to proliferate in peripheral nerve injury. Brain Circul. 2, 138 (2016).

    Article  Google Scholar 

  26. Castela, A. & Costa, C. Molecular mechanisms associated with diabetic endothelial–erectile dysfunction. Nat. Rev. Urol. 13, 266–274 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Qiu, X. et al. Effects of low-energy shockwave therapy on the erectile function and tissue of a diabetic rat model. J. Sex. Med. 10, 738–746 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Liu, J. et al. Evaluation of the effect of different doses of low energy shock wave therapy on the erectile function of streptozotocin (STZ)-induced diabetic rats. IJMS 14, 10661–10673 (2013).

    Article  PubMed  Google Scholar 

  29. Lei, H. et al. Low-intensity pulsed ultrasound improves erectile function in streptozotocin-induced type I diabetic rats. Urology 86, 1241.e11 (2015).

    Article  Google Scholar 

  30. Wang, J. et al. Kinetics of label retaining cells in the developing rat kidneys. PLoS ONE 10, e0144734 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bickenbach, J. R. Identification and behavior of label-retaining cells in oral mucosa and skin. J. Dent. Res. 60, 1611–1620 (1981).

    Article  PubMed  Google Scholar 

  32. Li, H. et al. Low-energy shock wave therapy ameliorates erectile dysfunction in a pelvic neurovascular injuries rat model. J. Sex. Med. 13, 22–32 (2016).

    Article  PubMed  Google Scholar 

  33. Humphreys, B. D. Cutting to the chase: taking the pulse of label-retaining cells in kidney. Am. J. Physiol. Renal Physiol. 308, F29–F30 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lin, G. et al. Presence of stem/progenitor cells in the rat penis. Stem Cells Dev. 24, 264–270 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Lin, C.-S., Xin, Z.-C., Dai, J. & Lue, T. F. Commonly used mesenchymal stem cell markers and tracking labels: limitations and challenges. Histol. Histopathol. 28, 1109–1116 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Mulhall, J. P., Goldstein, I., Bushmakin, A. G., Cappelleri, J. C. & Hvidsten, K. Validation of the erection hardness score. J. Sex. Med. 4, 1626–1634 (2007).

    Article  PubMed  Google Scholar 

  37. Rosen R. C., Cappelleri J. C., Smith M. D., Lipsky J. & Peña B. M. Development and evaluation of an abridged, 5-item version of the International Index of Erectile Function (IIEF-5) as a diagnostic tool for erectile dysfunction. Int J Impot. Res. 11, 319–326 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Rosen, R. C. et al. The international index of erectile function (IIEF): a multidimensional scale for assessment of erectile dysfunction. Urology 49, 822–830 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Vardi, Y., Appel, B., Kilchevsky, A. & Gruenwald, I. Does low intensity extracorporeal shock wave therapy have a physiological effect on erectile function? Short-term results of a randomized, double-blind, sham controlled study. J. Urol. 187, 1769–1775 (2012).

    Article  PubMed  Google Scholar 

  40. Olsen, A. B., Persiani, M., Boie, S., Hanna, M. & Lund, L. Can low-intensity extracorporeal shockwave therapy improve erectile dysfunction? A prospective, randomized, double-blind, placebo-controlled study. Scand. J. Urol. 49, 329–333 (2015).

    Article  PubMed  Google Scholar 

  41. Yee, C.-H., Chan, E. S., Hou, S. S.-M. & Ng, C.-F. Extracorporeal shockwave therapy in the treatment of erectile dysfunction: a prospective, randomized, double-blinded, placebo controlled study. Int. J. Urol. 21, 1041–1045 (2014).

    Article  PubMed  Google Scholar 

  42. Reisman, Y., Hind, A., Varaneckas, A. & Motil, I. Initial experience with linear focused shockwave treatment for erectile dysfunction: a 6-month follow-up pilot study. Int. J. Impot. Res. 27, 108–112 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Chung, E. & Cartmill, R. Evaluation of clinical efficacy, safety and patient satisfaction rate after low-intensity extracorporeal shockwave therapy for the treatment of male erectile dysfunction: an Australian first open-label single-arm prospective clinical trial. BJU Int. 115 (Suppl. 5), 46–49 (2015).

    Article  PubMed  Google Scholar 

  44. Pelayo-Nieto, M. et al. Linear shock wave therapy in the treatment of erectile dysfunction. Actas Urol. Esp. 39, 456–459 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Srini, V. S., Reddy, R. K., Shultz, T. & Denes, B. Low intensity extracorporeal shockwave therapy for erectile dysfunction: a study in an Indian population. Can. J. Urol. 22, 7614–7622 (2015).

    PubMed  Google Scholar 

  46. Ruffo, A. et al. Safety and efficacy of low intensity shockwave (LISW) treatment in patients with erectile dysfunction. Int. Braz. J. Urol. 41, 967–974 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Frey, A., Sønksen, J. & Fode, M. Low-intensity extracorporeal shockwave therapy in the treatment of postprostatectomy erectile dysfunction: a pilot study. Scand. J. Urol. 50, 123–127 (2015).

    Article  PubMed  Google Scholar 

  48. Bechara, A., Casabé, A., De Bonis, W. & Ciciclia, P. G. Twelve-month efficacy and safety of low-intensity shockwave therapy for erectile dysfunction in patients who do not respond to phosphodiesterase type 5 inhibitors. Sex. Med. 4, e225–e232 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hisasue, S.-I. et al. Impact of aging and comorbidity on the efficacy of low-intensity shock wave therapy for erectile dysfunction. Int. J. Urol. 23, 80–84 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Fojecki, G. L., Tiessen, S. & Osther, P. J. S. Effect of low-energy linear shockwave therapy on erectile dysfunction—A double-blinded, sham-controlled, randomized clinical trial. J. Sex. Med. 14, 106–112 (2017).

    Article  PubMed  Google Scholar 

  51. Motil, I., Kubis, I. & Sramkova, T. Treatment of vasculogenic erectile dysfunction with Piezowave2 device. Application of low intensity shockwaves using novel linear shockwave tissue coverage (LSTC-ED®) technique. A prospective, multicentric, placebo-controlled study. Adv. Sexual Med. 6, 15–18 (2016).

    Article  Google Scholar 

  52. Lu, Z. et al. Low-intensity extracorporeal shock wave treatment improves erectile function: a systematic review and meta-analysis. Eur. Urol. 71, 223–233 (2017).

    Article  PubMed  Google Scholar 

  53. Fojecki, G. L., Tiessen, S. & Osther, P. J. S. Extracorporeal shock wave therapy (ESWT) in urology: a systematic review of outcome in Peyronie's disease, erectile dysfunction and chronic pelvic pain. World J. Urol. 35, 1–9 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Angulo, J. C. et al. Efficacy of low-intensity shock wave therapy for erectile dysfunction: a systematic review and meta-analysis. Actas Urol. Esp. https://doi.org/10.1016/j.acuro.2016.07.005 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Clavijo, R. I., Kohn, T. P., Kohn, J. R. & Ramasamy, R. Effects of low-intensity extracorporeal shockwave therapy on erectile dysfunction: A systematic review and meta-analysis. J. Sex. Med. 14, 27–35 (2017).

    Article  PubMed  Google Scholar 

  56. Fisher, W. A. et al. Standards for clinical trials in male and female sexual dysfunction: III. Unique aspects of clinical trials in male sexual dysfunction. J. Sex. Med. 14, 3–18 (2017).

    Article  PubMed  Google Scholar 

  57. Masterson, T. A., Serio, A. M., Mulhall, J. P., Vickers, A. J. & Eastham, J. A. Modified technique for neurovascular bundle preservation during radical prostatectomy: association between technique and recovery of erectile function. BJU Int. 101, 1217–1222 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Weyne, E., Castiglione, F., Van der Aa, F., Bivalacqua, T. J. & Albersen, M. Landmarks in erectile function recovery after radical prostatectomy. Nat. Rev. Urol. 12, 289–297 (2015).

    Article  PubMed  Google Scholar 

  59. Iacono, F. et al. Histological alterations in cavernous tissue after radical prostatectomy. J. Urol. 173, 1673–1676 (2005).

    Article  PubMed  Google Scholar 

  60. Miles, C. et al. Interventions for sexual dysfunction following treatments for cancer. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD005540.pub2 (2007).

  61. Hatzimouratidis, K. et al. Phosphodiesterase type 5 inhibitors in postprostatectomy erectile dysfunction: a critical analysis of the basic science rationale and clinical application. Eur. Urol. 55, 334–347 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Kilminster, S. et al. Predicting erectile function outcome in men after radical prostatectomy for prostate cancer. BJU Int. 110, 422–426 (2011).

    Article  PubMed  Google Scholar 

  63. Bellorofonte, C. et al. [Possibility of using the piezoelectric lithotriptor in the treatment of severe cavernous fibrosis]. Arch. Ital. Urol. Nefrol Androl 61, 417–422 (1989).

    CAS  PubMed  Google Scholar 

  64. Poulakis, V. et al. Extracorporeal shockwave therapy for Peyronie's disease: an alternative treatment? Asian J. Androl. 8, 361–366 (2006).

    Article  PubMed  Google Scholar 

  65. Claro, J. A. et al. An alternative non-invasive treatment for Peyronie's disease. Int. Braz. J. Urol. 30, 199–204 (2004).

    Article  PubMed  Google Scholar 

  66. Strebel, R. T., Suter, S., Sautter, T. & Hauri, D. Extracorporeal shockwave therapy for Peyronie's disease does not correct penile deformity. Int. J. Impot. Res. 16, 448–451 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Manikandan, R., Islam, W., Srinivasan, V. & Evans, C. M. Evaluation of extracorporeal shock wave therapy in Peyronie's disease. Urology 60, 795–800 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Lebret, T. et al. Extracorporeal shock wave therapy in the treatment of Peyronie's disease: experience with standard lithotriptor (siemens-multiline). Urology 59, 657–661 (2002).

    Article  PubMed  Google Scholar 

  69. Palmieri, A. et al. A first prospective, randomized, double-blind, placebo-controlled clinical trial evaluating extracorporeal shock wave therapy for the treatment of Peyronie's disease. Eur. Urol. 56, 363–369 (2009).

    Article  PubMed  Google Scholar 

  70. Hatzichristodoulou, G., Meisner, C., Gschwend, J. E., Stenzl, A. & Lahme, S. Extracorporeal shock wave therapy in Peyronie's disease: results of a placebo-controlled, prospective, randomized, single-blind study. J. Sex. Med. 10, 2815–2821 (2013).

    Article  PubMed  Google Scholar 

  71. Chitale, S., Morsey, M., Swift, L. & Sethia, K. Limited shock wave therapy versus sham treatment in men with Peyronie's disease: results of a prospective randomized controlled double-blind trial. - PubMed - NCBI. BJU Int. 106, 1352–1356 (2010).

    Article  PubMed  Google Scholar 

  72. Mulhall, J. P., Schiff, J. & Guhring, P. An analysis of the natural history of peyronie's disease. J. Urol. 175, 2115–2118 (2006).

    Article  PubMed  Google Scholar 

  73. Larsen, S. M. & Levine, L. A. Peyronie's disease: review of nonsurgical treatment options. Urol. Clin. North Amer. 38, 195–205 (2011).

    Article  Google Scholar 

  74. Gelbard, M. et al. Phase 2b study of the clinical efficacy and safety of collagenase clostridium histolyticum in patients with peyronie disease. J. Urol. 187, 2268–2274 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Palmieri, A. et al. Tadalafil once daily and extracorporeal shock wave therapy in the management of patients with Peyronie's disease and erectile dysfunction: results from a prospective randomized trial. Int. J. Androl. 35, 190–195 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Hauck, E. W. et al. Extracorporeal shock wave therapy for Peyronie's disease: exploratory meta-analysis of clinical trials. J. Urol. 171, 740–745 (2004).

    Article  PubMed  Google Scholar 

  77. Furlan, A. D., Pennick, V., Bombardier, C. & van Tulder, M. 2009 updated method guidelines for systematic reviews in the cochrane back review group. Spine 34, 1929–1941 (2009).

    Article  PubMed  Google Scholar 

  78. Rosen, R. C., Allen, K. R., Ni, X. & Araujo, A. B. Minimal clinically important differences in the erectile function domain of the international index of erectile function scale. Eur. Urol. 60, 1010–1016 (2011).

    Article  PubMed  Google Scholar 

  79. Albersen, M. & Lue, T. F. Sexual dysfunction: MCID provides new perspective on erectile function research. Nat. Rev. Urol. 8, 591–592 (2011).

    Article  PubMed  Google Scholar 

  80. Fode, M. & Albersen, M. Re: Zhihua Lu, Guiting Lin, Amanda Reed-Maldonado, Chunxi Wang, Yung-Chin Lee, Tom F. Lue. Low-intensity extracorporeal shock wave treatment improves erectile function: a systematic review and meta-analysis. Eur Urol 2017;71:223–33. Eur. Urol. 71, e76–e77 (2017).

    Article  PubMed  Google Scholar 

  81. Hatzichristou, D. G. & Kalyvianakis D. E. Erectile dysfunction shock wave therapy (EDSWT) improves hemodynamic parameters in patients with vasculogenic erectile dysfunction (ED): a triplex-based sham-controlled trial. Eur. Urol. 14, e124 (2015).

    Article  Google Scholar 

  82. Feldman, R. A., et al. The safety and efficacy of li-ESWT in 604 patients for erectile dysfunction: summary of current and evolving evidence. Medispec.com http://medispec.com/general/the-safety-and-efficacy-of-li-eswt-in-604-patients-for-erectile-dysfunction-summary-of-current-and-evolving-evidence/ (2015).

    Google Scholar 

  83. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02063061 (2016).

  84. Hatzichristou, D. Low-intensity extracorporeal shock waves therapy (LI-ESWT) for the treatment of erectile dysfunction: where do we stand? Eur. Urol. 71, 234–236 (2017).

    Article  PubMed  Google Scholar 

  85. Hamilton M. Cricket legend Sir Ian Botham bravely reveals impotence treatment after having privates zapped. www.thesun.co.ukhttps://www.thesun.co.uk/sport/1606663/sir-ian-botham-has-privates-zapped-in-bid-to-cure-impotence1606663/ (2016).

  86. Cappelleri, J. C., Rosen, R. C., Smith, M. D., Mishra, A. & Osterloh, I. H. Diagnostic evaluation of the erectile function domain of the International Index of Erectile Function. Urology 54, 346–351 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Zimmermann, R., Cumpanas, A., Miclea, F. & Janetschek, G. Extracorporeal shock wave therapy for the treatment of chronic pelvic pain syndrome in males: a randomised, double-blind, placebo-controlled study. Eur. Urol. 56, 418–424 (2009).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Consortia

Contributions

All authors researched data for article, made substantial contributions to discussion of content, and wrote and edited the manuscript before submission.

Corresponding author

Correspondence to Maarten Albersen.

Ethics declarations

Competing interests

The author declare no competing financial interests.

PowerPoint slides

Glossary

Electrohydraulic

Shockwaves are generated by high voltage discharging to a spark plug in an underwater source.

Electromagnetic

Electromagnetic shockwave generation is based on the physical principle of electromagnetic induction, as used, for example, in loudspeakers.

Piezoelectric

Piezo elements are arranged on a spherical surface and are synchronously excited by an electrical pulse to emit a pressure wave in the direction of the centre of the spherical surface.

Piezomagnetic

Analogous to the piezoelectric shockwave generator, but instead of an electrical pulse, physical deformation of the piezo elements is achieved by applying a magnetic field.

Energy flux density

(EFD). The energy delivered by the shockwave-generating source at the focussed point is called energy flux density and is normally recorded in energy per surface area units (mJ/mm2).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Young Academic Urologists Men's Health Group. Low-intensity shockwave therapy for erectile dysfunction: is the evidence strong enough?. Nat Rev Urol 14, 593–606 (2017). https://doi.org/10.1038/nrurol.2017.119

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2017.119

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing