Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Oligometastatic prostate cancer: definitions, clinical outcomes, and treatment considerations

Key Points

  • Cancers presenting in the oligometastatic state likely include a spectrum of biologies

  • Some oligometastatic lesions quickly progress to widespread metastases, others metastasize gradually, and others lack the capacity for widespread progression, such that oligometastatic disease represents their maximum potential for progression

  • Preliminary genomic data support a molecular basis underlying phenotypic variability; however, for now, oligometastatic prostate cancer can be reasonably defined by up to five extrapelvic lesions

  • Local consolidative therapies, such as prostatectomy and radiotherapy, seem safe to perform in the metastatic setting and seem to reduce the need for palliative treatment; the effect of local therapy on survival outcomes cannot be determined conclusively using available data

  • Metastasis-directed approaches, such as stereotactic body radiotherapy, are associated with minimal toxicity and provide excellent local control; however, current data are insufficient for determining their effect on oncological outcomes

  • Aggressive treatment of oligometastatic prostate cancer should be considered only in the setting of prospective clinical trials or registries, with the patient informed of the limited evidence of benefit from such approaches

Abstract

The oligometastatic state has been proposed as an intermediate stage of cancer spread between localized disease and widespread metastases. With improvements in diagnostic modalities such as functional imaging, oligometastatic prostate cancer is being diagnosed with greater frequency than ever before. Furthermore, the paradigm for treatment of advanced prostate cancers is shifting toward a more aggressive approach. Many questions surround the understanding of the process and consequences of oligometastasis, meaning that the contemporary literature offers a wide variety of definitions of oligometastatic prostate cancer. Until genomic data exist to provide a biological component to the definition of oligometastatic disease, a clinical diagnosis made on the basis of up to five extrapelvic lesions is reasonable for use. Retrospective studies suggest that interventions such as radical prostatectomy and local or metastasis-directed radiotherapy can be performed in the metastatic setting with minimal risk of toxic effects. These therapies seem to decrease the need for subsequent palliative interventions, but insufficient data are available to draw reliable conclusions regarding their effect on survival. Thus, a protocol for clinicians to manage the patient presenting with oligometastatic prostate cancer would be a useful clinical tool.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Recurrent prostate cancer detected with PSMA-targeted 18F-DCFPyL PET–CT.
Figure 2: Schema for the phase II Randomized Observation versus Stereotactic Ablative RadiatIon for OLigometastatic Prostate CancEr (ORIOLE) trial.

Similar content being viewed by others

References

  1. Hellman, S. & Weichselbaum, R. R. Oligometastases. J. Clin. Oncol. 13, 8–10 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Vogelstein, B. & Kinzler, K. W. The multistep nature of cancer. Trends Genet. 9, 138–141 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Rinker-Schaeffer, C. W., Partin, A. W., Isaacs, W. B., Coffey, D. S. & Isaacs, J. T. Molecular and cellular changes associated with the acquisition of metastatic ability by prostatic cancer cells. Prostate 25, 249–265 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Weichselbaum, R. R. & Hellman, S. Oligometastases revisited. Nat. Rev. Clin. Oncol. 8, 378–382 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Pastorino, U. et al. Long-term results of lung metastasectomy: prognostic analyses based on 5206 cases. J. Thorac. Cardiovasc. Surg. 113, 37–49 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Reyes, D. K. & Pienta, K. J. The biology and treatment of oligometastatic cancer. Oncotarget 6, 8491–8524 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Khoo, V. Is there another bite of the cherry? The case for radical local therapy for oligometastatic disease in prostate cancer. Eur. Urol. 69, 13–14 (2016).

    Article  PubMed  Google Scholar 

  8. Evangelista, L. et al. New clinical indications for 18F/11C-choline, new tracers for positron emission tomography and a promising hybrid device for prostate cancer staging: a systematic review of the literature. Eur. Urol. 70, 161–175 (2016).

    Article  PubMed  Google Scholar 

  9. Tamoto, E. et al. Gene-expression profile changes correlated with tumor progression and lymph node metastasis in esophageal cancer. Clin. Cancer Res. 10, 3629–3638 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Wuttig, D. et al. Gene signatures of pulmonary metastases of renal cell carcinoma reflect the disease-free interval and the number of metastases per patient. Int. J. Cancer 125, 474–482 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Lussier, Y. A. et al. MicroRNA expression characterizes oligometastasis(es). PLoS ONE 6, e28650 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rubin, P., Brasacchio, R. & Katz, A. Solitary metastases: illusion versus reality. Semin. Radiat. Oncol. 16, 120–130 (2006).

    Article  PubMed  Google Scholar 

  13. Bayne, C. E. et al. Treatment of the primary tumor in metastatic prostate cancer: current concepts and future perspectives. Eur. Urol. 69, 775–787 (2016).

    Article  PubMed  Google Scholar 

  14. Heidenreich, A. et al. EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent-update 2013. Eur. Urol. 65, 124–137 (2014).

    Article  PubMed  Google Scholar 

  15. Sharifi, N., Gulley, J. L. & Dahut, W. L. Androgen deprivation therapy for prostate cancer. JAMA 294, 238–244 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Perlmutter, M. A. & Lepor, H. Androgen deprivation therapy in the treatment of advanced prostate cancer. Rev. Urol. 9, S3–S8 (2007).

    PubMed  PubMed Central  Google Scholar 

  17. James, N. D. et al. Failure-free survival and radiotherapy in patients with newly diagnosed nonmetastatic prostate cancer: data from patients in the control arm of the STAMPEDE trial. JAMA Oncol. 2, 348–357 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lin, C. C., Gray, P. J., Jemal, A. & Efstathiou, J. A. Androgen deprivation with or without radiation therapy for clinically node-positive prostate cancer. J. Natl. Cancer Inst. 107, djv119 (2015).

    Article  PubMed  CAS  Google Scholar 

  19. Tward, J. D., Kokeny, K. E. & Shrieve, D. C. Radiation therapy for clinically node-positive prostate adenocarcinoma is correlated with improved overall and prostate cancer-specific survival. Pract. Radiat. Oncol. 3, 234–240 (2013).

    Article  PubMed  Google Scholar 

  20. Rusthoven, C. G. et al. The impact of definitive local therapy for lymph node-positive prostate cancer: a population-based study. Int. J. Radiat. Oncol. Biol. Phys. 88, 1064–1073 (2014).

    Article  PubMed  Google Scholar 

  21. Aoun, F., Peltier, A. & van Velthoven, R. A comprehensive review of contemporary role of local treatment of the primary tumor and/or the metastases in metastatic prostate cancer. Biomed. Res. Int. 2014, 501213 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ost, P. et al. Metastasis-directed therapy of regional and distant recurrences after curative treatment of prostate cancer: a systematic review of the literature. Eur. Urol. 67, 852–863 (2015).

    Article  PubMed  Google Scholar 

  23. Abrahamsson, P.-A. Potential benefits of intermittent androgen suppression therapy in the treatment of prostate cancer: a systematic review of the literature. Eur. Urol. 57, 49–59 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Heidenreich, A. et al. EAU guidelines on prostate cancer. Part II: treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur. Urol. 65, 467–479 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Attard, G. et al. Combining enzalutamide with abiraterone, prednisone, and androgen deprivation therapy in the STAMPEDE trial. Eur. Urol. 66, 799–802 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Sweeney, C. J. et al. Chemohormonal therapy in metastatic hormone-sensitive prostate cancer. N. Engl. J. Med. 373, 737–746 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tabata, K.-I. et al. Radiotherapy for oligometastases and oligo-recurrence of bone in prostate cancer. Pulm. Med. 2012, 541656 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ahmed, K. A. et al. Stereotactic body radiation therapy in the treatment of oligometastatic prostate cancer. Front. Oncol. 2, 215 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Berkovic, P. et al. Salvage stereotactic body radiotherapy for patients with limited prostate cancer metastases: deferring androgen deprivation therapy. Clin. Genitourin. Cancer 11, 27–32 (2013).

    Article  PubMed  Google Scholar 

  30. Schick, U. et al. Androgen deprivation and high-dose radiotherapy for oligometastatic prostate cancer patients with less than five regional and/or distant metastases. Acta Oncol. 52, 1622–1628 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Decaestecker, K. et al. Repeated stereotactic body radiotherapy for oligometastatic prostate cancer recurrence. Radiat. Oncol. 9, 135 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ost, P. et al. Progression-free survival following stereotactic body radiotherapy for oligometastatic prostate cancer treatment-naive recurrence: a multi-institutional analysis. Eur. Urol. 69, 9–12 (2016).

    Article  PubMed  Google Scholar 

  33. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01859221 (2016).

  34. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02563691 (2015).

  35. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02489357 (2015).

  36. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01777802 (2016).

  37. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02192788 (2016).

  38. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01558427 (2016).

  39. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02264379 (2016).

  40. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00544830 (2016).

  41. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02020070 (2016).

  42. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02680587 (2016).

  43. Soloway, M. S. et al. Stratification of patients with metastatic prostate cancer based on extent of disease on initial bone scan. Cancer 61, 195–202 (1988).

    Article  CAS  PubMed  Google Scholar 

  44. Culp, S. H., Schellhammer, P. F. & Williams, M. B. Might men diagnosed with metastatic prostate cancer benefit from definitive treatment of the primary tumor? A SEER-based study. Eur. Urol. 65, 1058–1066 (2014).

    Article  PubMed  Google Scholar 

  45. Antwi, S. & Everson, T. M. Prognostic impact of definitive local therapy of the primary tumor in men with metastatic prostate cancer at diagnosis: a population-based, propensity score analysis. Cancer Epidemiol. 38, 435–441 (2014).

    Article  PubMed  Google Scholar 

  46. Gratzke, C., Engel, J. & Stief, C. G. Role of radical prostatectomy in metastatic prostate cancer: data from the Munich Cancer Registry. Eur. Urol. 66, 602–603 (2014).

    Article  PubMed  Google Scholar 

  47. Satkunasivam, R. et al. Radical prostatectomy or external beam radiation therapy versus no local therapy for survival benefit in metastatic prostate cancer: a SEER-Medicare analysis. J. Urol. 194, 378–385 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Heidenreich, A., Pfister, D. & Porres, D. Cytoreductive radical prostatectomy in patients with prostate cancer and low volume skeletal metastases: results of a feasibility and case-control study. J. Urol. 193, 832–838 (2015).

    Article  PubMed  Google Scholar 

  49. Cho, Y. et al. Does radiotherapy for the primary tumor benefit prostate cancer patients with distant metastasis at initial diagnosis? PLoS ONE 11, e0147191 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Heinze, G. & Jüni, P. An overview of the objectives of and the approaches to propensity score analyses. Eur. Heart J. 32, 1704–1708 (2011).

    Article  PubMed  Google Scholar 

  51. Wu, J. S. Y., Wong, R., Johnston, M., Bezjak, A. & Whelan, T. Meta-analysis of dose-fractionation radiotherapy trials for the palliation of painful bone metastases. Int. J. Radiat. Oncol. Biol. Phys. 55, 594–605 (2003).

    Article  PubMed  Google Scholar 

  52. Cameron, M. G., Kersten, C., Guren, M. G., Fosså, S. D. & Vistad, I. Palliative pelvic radiotherapy of symptomatic incurable prostate cancer — a systematic review. Radiother. Oncol. 110, 55–60 (2014).

    Article  PubMed  Google Scholar 

  53. Ellsworth, S. G. et al. Patterns of care among patients receiving radiation therapy for bone metastases at a large academic institution. Int. J. Radiat. Oncol. Biol. Phys. 89, 1100–1105 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Edge, S. B. et al. AJCC Cancer Staging Manual 7th edn (Springer, 2010).

    Google Scholar 

  55. Muacevic, A. et al. Safety and feasibility of image-guided robotic radiosurgery for patients with limited bone metastases of prostate cancer. Urol. Oncol. 31, 455–460 (2013).

    Article  PubMed  Google Scholar 

  56. Trotti, A. et al. CTCAE v3.0: development of a comprehensive grading system for the adverse effects of cancer treatment. Semin. Radiat. Oncol. 13, 176–181 (2003).

    Article  PubMed  Google Scholar 

  57. Mohler, J. L. et al. Prostate cancer, version 1.2016. J. Natl Compr. Canc. Netw. 14, 19–30 (2016).

    Article  PubMed  Google Scholar 

  58. Schirrmeister, H. et al. Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18F PET. J. Nucl. Med. 40, 1623–1629 (1999).

    CAS  PubMed  Google Scholar 

  59. Poulsen, M. H. et al. Spine metastases in prostate cancer: comparison of technetium-99m-MDP whole-body bone scintigraphy, [18F]choline positron emission tomography(PET)/computed tomography (CT) and [18F]NaF PET/CT. BJU Int. 114, 818–823 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Apolo, A. B. et al. Prospective study evaluating Na18F-positron emission tomography/computed tomography (NaF-PET/CT) in predicting clinical outcomes and survival in advanced prostate cancer. J. Nucl. Med. 57, 886–892 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Cho, S. Y. & Szabo, Z. Molecular imaging of urogenital diseases. Semin. Nucl. Med. 44, 93–109 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  62. van Leeuwen, P. J. et al. 68Ga-PSMA has high detection rate of prostate cancer recurrence outside the prostatic fossa in patients being considered for salvage radiation treatment. BJU Int. 117, 732–739 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Maurer, T., Eiber, M., Schwaiger, M. & Gschwend, J. E. Current use of PSMA-PET in prostate cancer management. Nat. Rev. Urol. 13, 226–235 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Won, A. C. M., Gurney, H., Marx, G., De Souza, P. & Patel, M. I. Primary treatment of the prostate improves local palliation in men who ultimately develop castrate-resistant prostate cancer. BJU Int. 112, E250–E255 (2013).

    Article  PubMed  Google Scholar 

  65. Taylor, L. G., Canfield, S. E. & Du, X. L. Review of major adverse effects of androgen-deprivation therapy in men with prostate cancer. Cancer 115, 2388–2399 (2009).

    Article  PubMed  Google Scholar 

  66. Mickisch, G., Garin, A., van Poppel, H., de Prijck, L. & Sylvester, R. Radical nephrectomy plus interferon-alfa-based immunotherapy compared with interferon alfa alone in metastatic renal-cell carcinoma: a randomised trial. Lancet 358, 966–970 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Flanigan, R. C. et al. Cytoreductive nephrectomy in patients with metastatic renal cancer: a combined analysis. J. Urol. 171, 1071–1076 (2004).

    Article  PubMed  Google Scholar 

  68. Bristow, R. E. Survival effect of maximal cytoreductive surgery for advanced ovarian carcinoma during the platinum era: a meta-analysis. J. Clin. Oncol. 20, 1248–1259 (2002).

    Article  PubMed  Google Scholar 

  69. Glehen, O., Mohamed, F. & Gilly, F. N. Peritoneal carcinomatosis from digestive tract cancer: new management by cytoreductive surgery and intraperitoneal chemohyperthermia. Lancet Oncol. 5, 219–228 (2004).

    Article  PubMed  Google Scholar 

  70. Pienta, K. J., McGregor, N., Axelrod, R. & Axelrod, D. E. Ecological therapy for cancer: defining tumors using an ecosystem paradigm suggests new opportunities for novel cancer treatments. Transl Oncol. 1, 158–164 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Gundem, G. et al. The evolutionary history of lethal metastatic prostate cancer. Nature 520, 353–357 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Coen, J. J. Radical radiation for localized prostate cancer: local persistence of disease results in a late wave of metastases. J. Clin. Oncol. 20, 3199–3205 (2002).

    Article  PubMed  Google Scholar 

  73. Kim, M.-Y. et al. Tumor self-seeding by circulating cancer cells. Cell 139, 1315–1326 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kaplan, R. N., Rafii, S. & Lyden, D. Preparing the 'soil': the premetastatic niche. Cancer Res. 66, 11089–11093 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Predina, J. D. et al. Cytoreduction surgery reduces systemic myeloid suppressor cell populations and restores intratumoral immunotherapy effectiveness. J. Hematol. Oncol. 5, 34 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Qin, X.-J. et al. Tumor cytoreduction results in better response to androgen ablation — a preliminary report of palliative transurethral resection of the prostate in metastatic hormone sensitive prostate cancer. Urol. Oncol. 30, 145–149 (2012).

    Article  PubMed  Google Scholar 

  77. Psaila, B. & Lyden, D. The metastatic niche: adapting the foreign soil. Nat. Rev. Cancer 9, 285–293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hamid, O. et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N. Engl. J. Med. 369, 134–144 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Powles, T. et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515, 558–562 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Brahmer, J. et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med. 373, 123–135 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kwon, E. D. et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 15, 700–712 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Klein, E. A. Seeing and not believing: oligometastases and the future of metastatic prostate cancer. Eur. Urol. 67, 864–865 (2015).

    Article  PubMed  Google Scholar 

  84. Singh, D. et al. Is there a favorable subset of patients with prostate cancer who develop oligometastases? Int. J. Radiat. Oncol. 58, 3–10 (2004).

    Article  Google Scholar 

  85. Ost, P. et al. Prognostic factors influencing prostate cancer-specific survival in non-castrate patients with metastatic prostate cancer. Prostate 74, 297–305 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Gandaglia, G. et al. Impact of the site of metastases on survival in patients with metastatic prostate cancer. Eur. Urol. 68, 325–334 (2015).

    Article  PubMed  Google Scholar 

  87. Shindo-Okada, N., Takeuchi, K. & Nagamachi, Y. Establishment of cell lines with high- and low-metastatic potential from PC-14 human lung adenocarcinoma. Jpn J. Cancer Res. 92, 174–183 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li, Y. et al. Establishment of cell clones with different metastatic potential from the metastatic hepatocellular carcinoma cell line MHCC97. World J. Gastroenterol. 7, 630–636 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Corbin, K. S., Hellman, S. & Weichselbaum, R. R. Extracranial oligometastases: a subset of metastases curable with stereotactic radiotherapy. J. Clin. Oncol. 31, 1384–1390 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Daskivich, T. J. et al. Effect of age, tumor risk, and comorbidity on competing risks for survival in a U. S. population-based cohort of men with prostate cancer. Ann. Intern. Med. 158, 709–717 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Fossati, N. et al. Identifying optimal candidates for local treatment of the primary tumor among patients diagnosed with metastatic prostate cancer: a SEER-based study. Eur. Urol. 67, 3–6 (2015).

    Article  PubMed  Google Scholar 

  92. Bradley, C. J., Dahman, B. & Anscher, M. Prostate cancer treatment and survival: evidence for men with prevalent comorbid conditions. Med. Care 52, 482–489 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Sooriakumaran, P. et al. A multi-institutional analysis of perioperative outcomes in 106 men who underwent radical prostatectomy for distant metastatic prostate cancer at presentation. Eur. Urol. 69, 788–794 (2016).

    Article  PubMed  Google Scholar 

  94. Tewari, A. et al. Positive surgical margin and perioperative complication rates of primary surgical treatments for prostate cancer: a systematic review and meta-analysis comparing retropubic, laparoscopic, and robotic prostatectomy. Eur. Urol. 62, 1–15 (2012).

    Article  PubMed  Google Scholar 

  95. Sammon, J. D. et al. Patterns of declining use and the adverse effect of primary androgen deprivation on all-cause mortality in elderly men with prostate cancer. Eur. Urol. 68, 32–39 (2015).

    Article  PubMed  Google Scholar 

  96. Decaestecker, K. et al. Surveillance or metastasis-directed therapy for oligometastatic prostate cancer recurrence (STOMP): study protocol for a randomized phase II trial. BMC Cancer 14, 671 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Sundi, D. et al. Establishment of a new prostate cancer multidisciplinary clinic: format and initial experience. Prostate 75, 191–199 (2015).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

A.E.R. is supported by a DOD PRTA award (W81XWH− 13 − 1 − 0445) as well as a PCF Young Investigator Award and Patrick C. Walsh Investigator Grant. P. T. Tran was funded by the Motta and Nesbitt Families,the DoD (W81XWH- 11-1-0272), a Kimmel Translational Science Award (SKF-13-021), an ACS Scholar award (122688-RSG-12- 196-01-TBG), the NIH (R01CA166348 & 1U01CA183031) and a Movember-PCF Challenge Award. E.M.S. is supported by NIH U01CA196390−01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey J. Tosoian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tosoian, J., Gorin, M., Ross, A. et al. Oligometastatic prostate cancer: definitions, clinical outcomes, and treatment considerations. Nat Rev Urol 14, 15–25 (2017). https://doi.org/10.1038/nrurol.2016.175

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2016.175

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer