Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Novel methods for mapping the cavernous nerves during radical prostatectomy

Key Points

  • The identification and preservation of the cavernous nerves during radical prostatectomy is challenging, resulting in widely variable rates of postoperative sexual function

  • Current experimental diagnostic techniques include electrical and optical stimulation, fluorescence, microscopy, spectroscopy, ultrasonography and magnetic resonance imaging

  • These current techniques are limited by slow or inconsistent nerve responses, limited resolution, shallow imaging depth, slow image acquisition times and/or safety concerns

  • A single technology has not yet emerged as the preferred option for improving nerve-sparing radical prostatectomy

  • Multimodal approaches that combine complementary diagnostic techniques, anatomical and functional imaging and robotics might overcome some of the limitations and provide a better option

Abstract

The cavernous nerves, which course along the surface of the prostate gland, are responsible for erectile function. During radical prostatectomy, urologists are challenged in preserving these nerves and their function. Cavernous nerves are microscopic and show variable location in different patients; therefore, postoperative sexual potency rates are widely variable following radical prostatectomy. A variety of technologies, including electrical and optical nerve stimulation, dye-based optical fluorescence and microscopy, spectroscopy, ultrasound and magnetic resonance imaging have all been used to study cavernous nerve anatomy and physiology, and some of these methods are also potential intraoperative methods for identifying and preserving cavernous nerves. However, all of these technologies have inherent limitations, including slow or inconsistent nerve responses, poor image resolution, shallow image depth, slow image acquisition times and/or safety concerns. New and emerging technologies, as well as multimodal approaches combining existing methods, hold promise for improved postoperative sexual outcomes and patient quality of life following radical prostatectomy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cross-sectional diagram of the human prostate showing the location of the neurovascular bundles and their close proximity to the prostate surface.
Figure 2: Optical coherence tomography.
Figure 3
Figure 4: An axial T2-weighted MRI of the neurovascular bundles using a 3 T magnet.
Figure 5: Comparative trade-off between resolution and penetration depth for different imaging modalities.

Similar content being viewed by others

References

  1. Chen, H., Kim, C., Petrisor, D., Han, M. & Stoianovici, D. Correlation between the prostate size and location of the neurovascular bundles. J. Endourol. 27, A34–A35 (2013).

    Article  Google Scholar 

  2. Burnett, A. L. et al. Erectile function outcome reporting after clinically localized prostate cancer treatment. J. Urol. 178, 597–601 (2007).

    Article  PubMed  Google Scholar 

  3. Costello, A. J., Brooks, M. & Cole, O. J. Anatomical studies of the neurovascular bundle and cavernosal nerves. BJU Int. 94, 1071–1076 (2004).

    Article  PubMed  Google Scholar 

  4. Kiyoshima, K. et al. Anatomical features of periprostatic tissue and its surroundings: a histological analysis of 79 radical retropubic prostatectomy specimens. Jpn J. Clin. Oncol. 34, 463–468 (2004).

    Article  PubMed  Google Scholar 

  5. Takenaka, A., Murakami, G., Matsubara, A., Han, S. H. & Fujisawa. M. Variation in course of cavernous nerve with special reference to details of topographic relationships near prostatic apex: histologic study in male cadavers. Urology 65, 136–142 (2005).

    Article  PubMed  Google Scholar 

  6. Lunacek, A., Schwentner, C., Fritsch, H., Bartsch, G. & Strasser, H. Anatomical radical retropubic prostatectomy: 'curtain dissection' of the neurovascular bundle. BJU Int. 95, 1226–1231 (2005).

    Article  PubMed  Google Scholar 

  7. Sung, W., Lee, S., Park, Y.-K. & Chang, S.-G. Neuroanatomical study of periprostatic nerve distributions using human cadaver prostate. J. Korean Med. Sci. 25, 608–612 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Alsaid, B. et al. Division of autonomic nerves within the neurovascular bundles distally into corpora cavernosa and corpus spongiosum components: immunohistochemical confirmation with three-dimensional reconstruction. Eur. Urol. 59, 902–909 (2011).

    Article  PubMed  Google Scholar 

  9. Costello, A. J., Dowdle, B. W., Namdarian, B., Pedersen, J. & Murphy, D. G. Immunohistochemical study of the cavernous nerves in the periprostatic region. BJU Int. 107, 1210–1215 (2011).

    Article  PubMed  Google Scholar 

  10. Srivastava, A. et al. Neuroanatomic basis for traction-free preservation of the neural hammock during athermal robotic radical prostatectomy. Curr. Opin. Urol. 21, 49–59 (2011).

    Article  PubMed  Google Scholar 

  11. Parekattil, S., Yeung, L. L. & Su, L. M. Intraoperative tissue characterization and imaging. Urol. Clin. North Am. 36, 213–221 (2009).

    Article  PubMed  Google Scholar 

  12. Ponnusamy, K., Sorger, J. M. & Mohr, C. Nerve mapping technologies: novel technologies under development. J. Endourol. 26, 769–777 (2012).

    Article  PubMed  Google Scholar 

  13. Rai, S., Srivastava, A., Sooriakumaran, P. & Tewari, A. Advances in imaging the neurovascular bundle. Curr. Opin. Urol. 22, 88–96 (2012).

    Article  PubMed  Google Scholar 

  14. Hsu, M., Gupta, M., Su, L. M. & Liao, J. C. Intraoperative optical imaging and tissue interrogation during urologic surgery. Curr. Opin. Urol. 24, 66–74 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Klotz, L. & Herschorn, S. Early experience with intraoperative cavernous nerve stimulation with penile tumescence monitoring to improve nerve sparing during radical prostatectomy. Urology 52, 537–542 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Klotz, L. Neurostimulation during radical prostatectomy: improving nerve-sparing techniques. Semin. Urol. Oncol. 18, 46–50 (2000).

    CAS  PubMed  Google Scholar 

  17. Klotz, L. et al. A randomized phase 3 study of intraoperative cavernous nerve stimulation with penile tumescence monitoring to improve nerve sparing during radical prostatectomy. J. Urol. 164, 1573–1578 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Kim, H. L., Stoffel, D. S., Mhoon, D. A. & Brendler, C. B. A positive caver map response poorly predicts recovery of potency after radical prostatectomy. Urology 56, 561–564 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Holzbeierlein, J., Peterson, M. & Smith, J. A. Jr. Variability of results of cavernous nerve stimulation during radical prostatectomy. J. Urol. 165, 108–110 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Walsh, P. C. et al. Efficacy of first-generation Cavermap to verify location and function of cavernous nerves during radical prostatectomy: a multi-institutional study by experienced surgeons. Urology 57, 491–494 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Kim, H. L., Mhoon, D. A. & Brendler, C. B. Does the CaverMap device help preserve potency? Curr. Urol. Rep. 2, 214–217 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Kurokawa, K. et al. A simple and reliable monitoring system to confirm the preservation of the cavernous nerves. Int. J. Urol. 8, 231–236 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Kurokawa, K. et al. Preliminary results of a monitoring system to confirm the preservation of cavernous nerves. Int. J. Urol. 10, 136–140 (2003).

    Article  PubMed  Google Scholar 

  24. Takenaka, A. et al. Pelvic autonomic nerve mapping around the prostate by intraoperative electrical stimulation with simultaneous measurement of intracavernous and intraurethral pressure. J. Urol. 177, 225–229 (2007).

    Article  PubMed  Google Scholar 

  25. Tran, H. H. Development of a real time intraoperative electrical impedance tomography sensor for cavernous nerve mapping for radical prostatectomy. Can. Urol. Assoc. J. 4, S115 (2010).

    Google Scholar 

  26. Kuhn, R. Results of using a new technology to improve the identification and preservation of nerve tissue during robotic assisted laparoscopic radical prostatectomy [abstract 852]. J. Urol. 189, e350 (2013).

    Article  Google Scholar 

  27. Kuhn, R. Real-time nerve mapping during RARP to identify nerves involved in the erectile response [abstract MP37–03]. J. Urol. 191 (Suppl.), e392–e393 (2014).

    Google Scholar 

  28. Wells. J. et al. Optical stimulation of neural tissue in vivo. Opt. Lett. 30, 504–506 (2005).

    Article  PubMed  Google Scholar 

  29. Wells, J., Kao, C., Jansen, E. D., Konrad, P. & Mahadevan-Jansen, A. Application of infrared light for in vivo neural stimulation. J. Biomed. Opt. 10, 064003, (2005).

    Article  PubMed  Google Scholar 

  30. Hale, G. M. & Querry, M. R. Optical constants of water in the 200 nm to 200 μm wavelength region. Appl. Opt. 12, 555–563 (1973).

    Article  CAS  PubMed  Google Scholar 

  31. Cesare, P., Moriondo, A., Vellani, V. & McNaughton, P. A. Ion channels gated by heat. Proc. Natl Acad. Sci. USA 96, 7658–7663 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wells, J. et al. Biophysical mechanisms of transient optical stimulation of peripheral nerve. Biophys. J. 93, 2567–2580 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shapiro, M. G., Homma, K., Villarreal, S., Richter, C. P. & Bezanilla, F. Infrared light excites cells by changing their electrical capacitance. Nat. Commun. 3, 736, 1–10 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Wells, J. D. et al. Optical mediated nerve stimulation: identification of injury thresholds. Lasers Surg. Med. 39, 513–526 (2007).

    Article  PubMed  Google Scholar 

  35. Fried, N. M., Lagoda, G. A., Scott, N. J., Su, L. M. & Burnett, A. L. Non-contact stimulation of the cavernous nerves in the rat prostate using a tunable-wavelength thulium fiber laser. J. Endourol. 22, 409–413 (2008).

    Article  PubMed  Google Scholar 

  36. Tozburun, S., Lagoda, G. A., Burnett, A. L. & Fried, N. M. Infrared laser nerve stimulation as a potential diagnostic method for intra-operative identification and preservation of the prostate cavernous nerves. J. Sel. Top. Quantum Electron. 20, 7101308 (2014).

    Article  CAS  Google Scholar 

  37. Tozburun, S., Lagoda, G. A., Burnett, A. L. & Fried, N. M. Subsurface near-infrared laser stimulation of the periprostatic cavernous nerves. J. Biophotonics 5, 793–800 (2012).

    Article  PubMed  Google Scholar 

  38. Tozburun, S., Lagoda, G. A., Burnett, A. L. & Fried, N. M. Continuous-wave infrared subsurface optical stimulation of the rat prostate cavernous nerves using a 1490 nm diode laser. Urology 82, 969–973 (2013).

    Article  PubMed  Google Scholar 

  39. Tozburun, S. et al. Temperature controlled optical stimulation of the rat prostate cavernous nerves. J. Biomed. Opt. 18, 067001 (2013).

    Article  PubMed  Google Scholar 

  40. Huang, D. et al. Optical coherence tomography. Science 254, 1178–1181 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tearney, G. J. et al. In vivo endoscopic optical biopsy with optical coherence tomography. Science 276, 2037–2039 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Koenig, F., Tearney, G. J. & Bouma, B. E. in Handbook of Optical Coherence Tomography (eds Bouma, B. E. & Tearney, G. J.) Ch. 28 (Marcel Dekker, 2002).

    Google Scholar 

  43. Crow, P., Stone, N., Kendall, C. A., Persad, R. A. & Wright, M. P. Optical diagnostics in urology: current applications and future prospects. BJU Int. 92, 400–407 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Tearney, G. J. et al. Optical biopsy in human urologic tissue using optical coherence tomography. J. Urol. 157, 1915–1919 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. D'Amico, A. V., Weinstein, M., Li, X., Richie, J. P. & Fujimoto, J. Optical coherence tomography as a method for identifying benign and malignant microscopic structures in the prostate gland. Urology 55, 783–787 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Boppart, S. A. Real-time optical coherence tomography for minimally invasive imaging of prostate ablation. Comput. Aided Surg. 6, 94–103 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Aron, M. et al. Preliminary experience with the Niris optical coherence tomography system during laparoscopic and robotic prostatectomy. J. Endourol. 21, 814–818 (2007).

    Article  PubMed  Google Scholar 

  48. Fried, N. M. et al. Imaging the cavernous nerves in the rat prostate using optical coherence tomography. Lasers Surg. Med. 39, 36–41 (2007).

    Article  PubMed  Google Scholar 

  49. Rais-Bahrami, S. et al. Optical coherence tomography of cavernous nerves: a step toward real-time intraoperative imaging during nerve-sparing radical prostatectomy. Urology 72, 198–204 (2008).

    Article  PubMed  Google Scholar 

  50. Dangle, P. P. et al. The use of high resolution optical coherence tomography to evaluate robotic radical prostatectomy specimens. Int. Braz. J. Urol. 35, 344–353 (2009).

    Article  PubMed  Google Scholar 

  51. Chitchian, S., Weldon, T. P., Fiddy, M. A. & Fried, N. M. Combined image processing algorithms for improved optical coherence tomography of the prostate nerves. J. Biomed. Opt. 15, 046014, (2010).

    Article  PubMed  Google Scholar 

  52. Golijanin, D. et al. Intraoperative visualization of cavernous nerves using near-infrared fluorescence of indocyanine green in the rat. Presented at the American Urological Association Meeting, 2006.

  53. Boyette, L. B. et al. Fiberoptic imaging of cavernous nerves in vivo. J. Urol. 178, 2694–2700 (2007).

    Article  PubMed  Google Scholar 

  54. Davila, H. H. et al. Visualization of the neurovascular bundles and major pelvic ganglion with fluorescent tracers after penile injection in the rat. BJU Int. 101, 1048–1051 (2008).

    Article  PubMed  Google Scholar 

  55. Tuttle, J. B. & Steers, W. D. Fiberoptic imaging for urologic surgery. Curr. Urol. Rep. 10, 60–64 (2009).

    Article  PubMed  Google Scholar 

  56. Lee, K. C., Sharma, S., Tuttle, J. B. & Steers, W. D. Origin and characterization of retrograde labeled neurons supplying the rat urethra using fiberoptic confocal fluorescent microscopy in vivo and immunohistochemistry. J. Urol. 184, 1550–1554 (2010).

    Article  PubMed  Google Scholar 

  57. Chaux, A. et al. Focal positive prostate-specific membrane antigen (PSMA) expression in ganglionic tissues associated with prostate neurovascular bundle: implications for novel intraoperative PSMA-based fluorescent imaging techniques. Urol. Oncol. 31, 572–575 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Zaak, D. et al. Photodynamic diagnosis of prostate cancer using 5-aminolevulinic acid—first clinical experiences. Urology 72, 345–348 (2008).

    Article  PubMed  Google Scholar 

  59. Ganzer, R. et al. Intraoperative photodynamic evaluation of surgical margins during endoscopic extraperitoneal radical prostatectomy with the use of 5-aminolevulinic acid. J. Endourol. 23, 1387–1394 (2009).

    Article  PubMed  Google Scholar 

  60. Fukuhara, H. et al. Photodynamic diagnosis of positive surgical margin during radical prostatectomy: preliminary experience with 5-aminolevulinic acid. Int. J. Urol. 18, 585–591 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Inoue, K. et al. Application of 5-aminolevulinic acid-mediated photodynamic diagnosis to robot-assisted laparoscopic radical prostatectomy. Urology 82, 1175–1178 (2013).

    Article  PubMed  Google Scholar 

  62. KleinJan, G. H. et al. Optimisation of fluorescence guidance during robot-assisted laparoscopic sentinel node biopsy for prostate cancer. Eur. Urol. 66, 991–998 (2014).

    Article  PubMed  Google Scholar 

  63. Wu, K. et al. Dynamic real-time microscopy of the urinary tract using confocal laser endomicroscopy. Urology 78, 225–231 (2011).

    Article  PubMed  Google Scholar 

  64. Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    Article  CAS  PubMed  Google Scholar 

  65. Yadav, R. et al. Multiphoton microscopy of prostate and periprostatic neural tissue: a promising technique for improving nerve-sparing prostatectomy. J. Endourol. 23, 861–867 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Grover, S. G. et al. Real-time multiphoton microscopy of human periprostatic tissue architecture for improving identification of vital tissue structures during nerve-sparing radical prostatectomy. Br. J. Med. Surg. Urol. 3, 267–268 (2010).

    Article  Google Scholar 

  67. Tewari, A. K. et al. Multiphoton microscopy for structure identification in human prostate and periprostatic tissue: implications in prostate cancer surgery. BJU Int. 108, 1421–1429 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Durand, M. et al. Real-time in vivo periprostatic nerve tracking using multiphoton microscopy in a rat survival surgery model: a promising pre-clinical study for enhanced nerve-sparing surgery. BJU Int. http://dx.doi.org/10.1111/bju.12903.

  69. Gao, L. et al. Label-free high-resolution imaging of prostate glands and cavernous nerves using coherent anti-Stokes Raman scattering microscopy. Biomed. Opt. Express 2, 915–926 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Crow, P. et al. Assessment of fiber optic near-infrared Raman spectroscopy for diagnosis of bladder and prostate cancer. Urology 65, 1126–1130 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. A'Amar, O. M., Liou, L., Rodriguez-Diaz, E., De las Morenas, A. & Bijio, I. J. Comparison of elastic scattering spectroscopy with histology in ex vivo prostate glands: potential application for optically guided biopsy and directed treatment. Lasers Med. Sci. 28, 1323–1329 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Baykara, M. et al. Detecting positive surgical margins using single optical fiber probe during radical prostatectomy: a pilot study. Urology 83, 1438–1442 (2014).

    Article  PubMed  Google Scholar 

  73. Ukimura, O. et al. Real-time ultrasonography during laparoscopic radical prostatectomy. J. Urol. 172, 112–118, (2004).

    Article  PubMed  Google Scholar 

  74. Ukimura, O. & Gill, I. S. Real-time transrectal ultrasound guidance during nerve sparing laparoscopic radical prostatectomy: pictorial essay. J. Urol. 175, 1311–1319 (2006).

    Article  PubMed  Google Scholar 

  75. Han, M. et al. Tandem-robot assisted laparoscopic radical prostatectomy to improve the neurovascular bundle visualization: a feasibility study. Urology 77, 502–506 (2011).

    Article  PubMed  Google Scholar 

  76. Long, J. A. et al. Real-time robotic transrectal ultrasound navigation during robotic radical prostatectomy: initial clinical experience. Urology 80, 608–613 (2012).

    Article  PubMed  Google Scholar 

  77. Badani, K. K. et al. A pilot study of laparoscopic Doppler ultrasound probe to map arterial vascular flow within the neurovascular bundle during robot-assisted radical prostatectomy. Prostate Cancer http://dx.doi.org/10.1155/2013/810715.

  78. Axelson, H. W., Johansson, E. & Bill-Axelson, A. Intraoperative cavernous nerve stimulation and laser-doppler flowmetry during radical prostatectomy. J. Sex. Med. 10, 2842–2848 (2013).

    Article  PubMed  Google Scholar 

  79. Tsai, Y. S. et al. Doppler spectral waveform parameters at neurovascular bundle vessels in patients with prostate biopsy. J. Endourol. 28, 364–370 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Pavlovich, C. P. et al. High-resolution transrectal ultrasound: pilot study of a novel technique for imaging clinically localized prostate cancer. Urol. Oncol. 32, 34e27–34e32 (2014).

    Article  Google Scholar 

  81. Lee, S. H. et al. Significance of neurovascular bundle formation observed on preoperative magnetic resonance imaging regarding postoperative erectile function after nerve-sparing retropubic radical prostatectomy. Urology 69, 510–514 (2007).

    Article  PubMed  Google Scholar 

  82. Brown, J. A. et al. Impact of preoperative endorectal MRI stage classification on neurovascular bundle sparing aggressiveness and the radical prostatectomy positive margin rate. Urol. Oncol. 27, 174–179 (2009).

    Article  PubMed  Google Scholar 

  83. Labanaris, A. P. et al. The role of conventional and functional endorectal magnetic resonance imaging in the decision of whether to preserve or resect the neurovascular bundles during radical retropubic prostatectomy. Scand. J. Urol. Nephrol. 43, 25–31 (2009).

    Article  PubMed  Google Scholar 

  84. Panebianco, V. et al. Use of multiparametric MR with neurovascular bundle evaluation to optimize the oncological and functional management of patients considered for nerve-sparing radical prostatectomy. J. Sex. Med. 9, 2157–2166 (2012).

    Article  PubMed  Google Scholar 

  85. McClure, T. D. et al. Use of MR imaging to determine preservation of the neurovascular bundles at robotic-assisted laparoscopic prostatectomy. Radiology 262, 874–883 (2012).

    Article  PubMed  Google Scholar 

  86. Tanaka, K. et al. Efficacy of using three-tesla magnetic resonance imaging diagnosis of capsule invasion for decision-making about neurovascular bundle preservation in robotic-assisted radical prostatectomy. Korean J. Urol. 54, 437–441 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Panebianco, V. et al. In vivo 3D neuroanatomical evaluation of periprostatic nerve plexus with 3T-MR Diffusion Tensor Imaging. Eur. J. Radiol. 82, 1677–1682 (2013).

    Article  PubMed  Google Scholar 

  88. Park, B. H. et al. Influence of magnetic resonance imaging in the decision to preserve or resect neurovascular bundles at robotic assisted laparoscopic radical prostatectomy. J. Urol. 192, 82–88 (2014).

    Article  PubMed  Google Scholar 

  89. Hoeks, C. M. et al. Prostate cancer: multiparametric MR imaging for detection, localization, and staging. Radiology 261, 46–66 (2011).

    Article  PubMed  Google Scholar 

  90. Hegde, J. V. et al. Multiparametric MRI of prostate cancer; an update on state-of-the-art techniques and their performance in detecting and localizing prostate cancer. J. Magn. Reson. Imaging 37, 1035–1054 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Mass, M. C. et al. Feasibility of T2-weighted turbo spin echo imaging of the human prostate gland at 7 tesla. Magn. Reson. Med. 71, 1711–1719 (2014).

    Article  Google Scholar 

  92. Vos, E. K. et al. Image quality and cancer visibility of T2-weighted magnetic resonance imaging of the prostate at 7 tesla. Eur. Radiol. 24, 1950–1958 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Luttje, M. P. et al. (31) P MR spectroscopic imaging combined with (1) H MR spectroscopic imaging in the human prostate using a double tuned endorectal coil at 7T. Magn. Reson. Med. 72, 1516–1521 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Rosenkrantz, A. B. et al. T2-weighted prostate MRI at 7 Tesla using a simplified external transmit-receive coil array: correlation with radical prostatectomy findings in two prostate cancer patients. J. Magn. Reson. Imaging 41, 226–232 (2015).

    Article  PubMed  Google Scholar 

  95. Wang, X., Roberts, W. W., Carson, P. L., Wood, D. P. & Fowlkes, J. B. Photoacoustic tomography: a potential new tool for prostate cancer. Biomed. Opt. Express 7, 1117–1126 (2010).

    Article  Google Scholar 

  96. Wang, L. V. & Hu, S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335, 1458–1462 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Duke, A. R. et al. Combined optical and electrical stimulation of neural tissue in vivo. J. Biomed. Opt. 14, 060501 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Duke, A. R., Lu, H., Jenkins, M. W., Chiel, H. J. & Jansen, E. D. Spatial and temporal variability in response to hybrid electro-optical stimulation. J. Neural Eng. 9, 036003, 1–15 (2012).

    Google Scholar 

  99. Duke, A. R. et al. Hybrid electro-optical stimulation of the rat sciatic nerve induces force generation in the plantarflexor muscles. J. Neural Eng. 9, 066006, 1–12 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Duke, A. R., Chiel, H. J. & Jansen, E. D. A simple model of the combined electrical-optical interaction in neural tissue. Austin J. Biomed. Eng. 1, 1010 (2014).

    Google Scholar 

  101. Tozburun, S. et al. A compact laparoscopic probe for optical stimulation of the prostate nerves. J. Sel. Top. Quantum Electron. 16, 941–945 (2010).

    Article  CAS  Google Scholar 

  102. Patil, A. V., Garson, C. D. & Hossack, J. A. 3D prostate elastography; algorithm, simulations and experiments. Phys. Med. Biol. 52, 3643–3663 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Fleming, I. N. et al. Ultrasound elastography: enabling technology for image guided laparoscopic prostatectomy. Proc. SPIE 7261, 72612I (2009).

    Article  Google Scholar 

  104. Fleming, I. N. et al. Ultrasound elastography as a tool for imaging guidance during prostatectomy: initial experience. Med. Sci. Monit. 18, CR635–CR642 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

N.M.F. researched data for the article and wrote the manuscript. A.L.B. contributed to the discussion of content and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Nathaniel M. Fried.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fried, N., Burnett, A. Novel methods for mapping the cavernous nerves during radical prostatectomy. Nat Rev Urol 12, 451–460 (2015). https://doi.org/10.1038/nrurol.2015.174

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2015.174

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing