Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Landmarks in erectile function recovery after radical prostatectomy

Abstract

The description of the nerve-sparing technique of radical prostatectomy by Walsh was one of the major breakthroughs in the surgical treatment of prostate cancer in the 20th century. However, despite this advance and consequent technological refinements to nerve-sparing surgery, a large proportion of men still suffer from erectile dysfunction (ED) as a complication of prostatectomy. A plethora of therapeutic approaches have been proposed to optimize erectile function recovery in these patients. Several preclinical and translational studies have shown benefits of therapies including PDE5 inhibitor (PDE5I) treatment, immunomodulation, neurotrophic factor administration, and regenerative techniques, such as stem cell therapy, in animal models. However, most of these approaches have either failed to translate to clinical use or have yet to be studied in human subjects. Penile rehabilitation with PDE5Is is currently the most commonly used clinical strategy, in spite of the absence of solid clinical evidence to support its use.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Walsh and Donker's original notes regarding their identification of penile erectile innervation by dissection of an infant cadaver.
Figure 2: Landmarks in erectile function recovery after radical prostatectomy.

References

  1. Kwan, H., McLaren, R. & Peterson, T. The life and times of a great surgeon: Theodor Billroth (1829–1894). J. Invest. Surg. 14, 191–194 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Arthur Fergusson McGill. The British Association of Urological Surgeons [online], (2015).

  3. Belfield, W. T. Operations on the enlarged prostate. with a tabulated summary of cases. Am. J. Med. Sci. 100, 439–451 (1890).

    Article  Google Scholar 

  4. Hugh Hampton Young. The James Buchanan Brady Urological Institute [online], (2015).

  5. Retropubic prostatectomy. BAUS Virtual Museum [online], (2015).

  6. Millin, T. Retropubic prostatectomy; a new extravesical technique; report of 20 cases. Lancet 2, 693–696 (1945).

    Article  CAS  PubMed  Google Scholar 

  7. Jewett, H. J. Radical perineal prostatectomy for carcinoma: an analysis of cases at Johns Hopkins Hospital, 1904–1954. JAMA 156, 1039–1041 (1954).

    Article  CAS  Google Scholar 

  8. Brendler, C. B. & Walsh, P. C. The role of radical prostatectomy in the treatment of prostate cancer. CA Cancer J. Clin. 42, 212–222 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Millin T. in Carcinoma of the Prostate: Radical Retropubic Prostatectomy (Williams & Wilkins, 1947).

    Google Scholar 

  10. Reiner, W. G. & Walsh, P. C. An anatomical approach to the surgical management of the dorsal vein and Santorini's plexus during radical retropubic surgery. J. Urol. 121, 198–200 (1979).

    Article  CAS  PubMed  Google Scholar 

  11. Walsh, P. C. The discovery of the cavernous nerves and development of nerve sparing radical retropubic prostatectomy. J. Urol. 177, 1632–1635 (2007).

    Article  PubMed  Google Scholar 

  12. Walsh, P. C. & Donker, P. J. Impotence following radical prostatectomy: insight into aetiology and prevention. J. Urol. 128, 492–497 (1982).

    Article  CAS  PubMed  Google Scholar 

  13. Schuessler, W. W., Schulam, P. G., Clayman, R. V. & Kavoussi, L. R. Laparoscopic radical prostatectomy: initial short-term experience. Urology 50, 854–857 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Binder, J. & Kramer, W. Robotically-assisted laparoscopic radical prostatectomy. BJU Int. 87, 408–410 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Boorjian, S. A. et al. A critical analysis of the long-term impact of radical prostatectomy on cancer control and function outcomes. Eur. Urol. 61, 664–675 (2012).

    Article  PubMed  Google Scholar 

  16. Heidenreich, A. et al. EAU guidelines on prostate cancer. Part 1: Screening, diagnosis, and local treatment with curative intent—Update 2013. Eur. Urol. 65, 124–137 (2014).

    Article  PubMed  Google Scholar 

  17. Katz, D. et al. Chronology of erectile function in patients with early functional erections following radical prostatectomy. J. Sex Med. 7, 803–809 (2010).

    Article  PubMed  Google Scholar 

  18. Nelson, C. J., Scardino, P. T., Eastham, J. A. & Mulhall, J. P. Back to baseline: erectile function recovery after radical prostatectomy from the patients' perspective. J. Sex Med. 10, 1636–1643 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bannowsky, A. et al. Nocturnal tumescence: a parameter for postoperative erectile integrity after nerve sparing radical prostatectomy. J. Urol. 175, 2214–2217 (2006).

    Article  PubMed  Google Scholar 

  20. Leungwattanakij, S. et al. Cavernous neurotomy causes hypoxia and fibrosis in rat corpus cavernosum. J. Androl. 24, 239–245 (2003).

    Article  PubMed  Google Scholar 

  21. User, H. M., Hairston, J. H., Zelner, D. J., McKenna, K. E. & McVary, K. T. Penile weight and cell subtype specific changes in a post-radical prostatectomy model of erectile dysfunction. J. Urol. 169, 1175–1179 (2003).

    Article  PubMed  Google Scholar 

  22. Mulhall, J. P. et al. Erectile dysfunction after radical prostatectomy: haemodynamic profiles and their correlation with the recovery of erectile function. J. Urol. 167, 1371–1375 (2002).

    Article  PubMed  Google Scholar 

  23. Muller, A. & Mulhall, J. P. Erectile function preservation and rehabilitation in Sexual Function in the Prostate Cancer Patient 142–146 (Humana Press, 2009).

    Google Scholar 

  24. Polascik, T. J. & Walsh, P. C. Radical retropubic prostatectomy: the influence of accessory pudendal arteries on the recovery of sexual function. J. Urol. 154, 150–152 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Rogers, C. G., Trock, B. P. & Walsh, P. C. Preservation of accessory pudendal arteries during radical retropubic prostatectomy: surgical technique and results. Urology 64, 148–151 (2004).

    Article  PubMed  Google Scholar 

  26. Box, G. N. et al. Sacrifice of accessory pudendal arteries in normally potent men during robot-assisted radical prostatectomy does not impact potency. J. Sex. Med. 7, 298–303 (2010).

    Article  PubMed  Google Scholar 

  27. Canguven, O. & Burnett, A. Cavernous nerve injury using rodent animal models. J. Sex. Med. 5, 1776–1785 (2008).

    Article  PubMed  Google Scholar 

  28. Eckhard, C. Untersuchungen über die erection des penis bein hunde. Beitrage zur Anatomie und Physiologie 3, 123–150 (1863).

    Google Scholar 

  29. Semans, J. H. & Langworthy, O. R. Observations on the neurophysiology of sexual function in the male cat. J. Urol. 40, 836 (1938).

    Article  Google Scholar 

  30. Lue, T. F., Takamura, T., Schmidt, R. A., Palubinskas, A. J. & Tanagho, E. A. Haemodynamics of erection in the monkey. J. Urol. 130, 1237–1241 (1983).

    Article  CAS  PubMed  Google Scholar 

  31. Quinlan, D. M., Nelson, R. J., Partin, A. W., Mostwin, J. L. & Walsh, P. C. The rat as a model for the study of penile erection. J. Urol. 141, 656–661 (1989).

    Article  CAS  PubMed  Google Scholar 

  32. Bella, A. J., Lin, G., Cagiannos, I. & Lue, T. F. Emerging neuromodulatory molecules for the treatment of neurogenic erectile dysfunction caused by cavernous nerve injury. Asian J. Androl. 10, 54–59 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Gold, B. G. FK506 and the role of immunophilins in nerve regeneration. Mol. Neurobiol. 15, 285–306 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Sezen, S. F., Lagoda, G. & Burnett, A. L. Role of immunophilins in recovery of erectile function after cavernous nerve injury. J. Sex. Med. 6, 340–346 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sezen, S. F., Hoke, A., Burnett, A. L. & Snyder, S. H. Immunophilin ligand FK506 is neuroprotective for penile innervation. Nat. Med. 7, 1073–1074 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Hayashi, N. et al. The effect of FK1706 on erectile function following bilateral cavernous nerve crush injury in a rat model. J. Urol. 176, 824–829 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Bella, A. J., Hayashi, N., Carrion, R. E., Price, R. & Lue, T. F. FK1706 enhances the recovery of erectile function following bilateral cavernous nerve crush injury in the rat. J. Sex. Med. 4, 341–347 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Valentine, H. et al. Neuroimmunophilin ligands protect cavernous nerves after crush injury in the rat: new experimental paradigms. Eur. Urol. 51, 1724–1731 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. US National Library of Medicine. ClinicalTrials.gov [online], (2010).

  40. US National Library of Medicine. ClinicalTrials.gov [online], (2008).

  41. Calenda, G. et al. Whole genome microarray of the major pelvic ganglion after cavernous nerve injury: new insights into molecular profile changes after nerve injury. BJU Int. 109, 1552–1564 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Bella, A. J. et al. Nerve growth factor modulation of the cavernous nerve response to injury. J. Sex. Med. 6 (Suppl. 3), 347–352 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bakircioglu, M. E. et al. The effect of adeno-associated virus mediated brain derived neurotrophic factor in an animal model of neurogenic impotence. J. Urol. 165, 2103–2109 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Burgers, J. K., Nelson, R. J., Quinlan, D. M. & Walsh, P. C. Nerve growth factor, nerve grafts and amniotic membrane grafts restore erectile function in rats. J. Urol. 146, 463–468 (1991).

    Article  CAS  PubMed  Google Scholar 

  45. Kato, R. et al. Herpes simplex virus vector-mediated delivery of glial cell line-derived neurotrophic factor rescues erectile dysfunction following cavernous nerve injury. Gene Ther. 14, 1344–1352 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Lin, G. et al. Neurotrophic effects of vascular endothelial growth factor and neurotrophins on cultured major pelvic ganglia. BJU Int. 92, 631–635 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Kato, R. et al. Herpes simplex virus vector-mediated delivery of neurturin rescues erectile dysfunction of cavernous nerve injury. Gene Ther. 16, 26–33 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Fandel, T. M. et al. Intracavernous Growth Differentiation Factor5 therapy enhances the recovery of erectile function in a rat model of cavernous nerve injury. J. Sex. Med. 5, 1866–1875 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Weyne, E. et al. Increased expression of the neuroregenerative peptide galanin in the major pelvic ganglion following cavernous nerve injury. J. Sex. Med. 11, 1685–1693 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Levi-Montalcini, R. & Hamburger, V. Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo. J. Exp. Zool. 116, 321–361 (1951).

    Article  CAS  PubMed  Google Scholar 

  51. Tuttle, J. B. & Steers, W. D. Nerve growth factor responsiveness of cultured major pelvic ganglion neurons from the adult rat. Brain Res. 588, 29–40 (1992).

    Article  CAS  PubMed  Google Scholar 

  52. Lin, G. et al. Novel therapeutic approach for neurogenic erectile dysfunction: effect of neurotrophic tyrosine kinase receptor type 1 monoclonal antibody. Eur. Urol. 67, 716–726 (2014).

    Article  PubMed  CAS  Google Scholar 

  53. Wanigasekara, Y. & Keast, J. R. Neurturin has multiple neurotrophic effects on adult rat sacral parasympathetic ganglion neurons. Eur. J. Neurosci. 22, 595–604 (2005).

    Article  PubMed  Google Scholar 

  54. Hsieh, P. S. et al. The effect of vascular endothelial growth factor and brain-derived neurotrophic factor on cavernosal nerve regeneration in a nerve-crush rat model. BJU Int. 92, 470–475 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Liu, H. et al. Current sustained delivery strategies for the design of local neurotrophic factors in treatment of neurological disorders. Asian J. Pharm. Sci. 8, 269–277 (2013).

    Article  Google Scholar 

  56. Weyne, E. & Albersen, M. Decade in review—sexual dysfunction: Post-RP erectile dysfunction—therapies for the next decade. Nat. Rev. Urol. 11, 616–618 (2014).

    Article  PubMed  Google Scholar 

  57. Klotz, L. & Herschorn, S. Early experience with intraoperative cavernous nerve stimulation with penile tumescence monitoring to improve nerve sparing during radical prostatectomy. Urology 52, 537–542 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Walsh, P. C. et al. Efficacy of first-generation Cavermap to verify location and function of cavernous nerves during radical prostatectomy: a multi-institutional evaluation by experienced surgeons. Urology 57, 491–494 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Klotz, L. et al. A randomized phase 3 study of intraoperative cavernous nerve stimulation with penile tumescence monitoring to improve nerve sparing during radical prostatectomy. J. Urol. 164, 1573–1578 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. White, W. M. & Kim, E. D. Interposition nerve grafting during radical prostatectomy: cumulative review and critical appraisal of literature. Urology 74, 245–250 (2009).

    Article  PubMed  Google Scholar 

  61. Quinlan, D. M., Nelson, R. J. & Walsh, P. C. Cavernous nerve grafts restore erectile function in denervated rats. J. Urol. 145, 380–383 (1991).

    Article  CAS  PubMed  Google Scholar 

  62. Kim, E. D. et al. Bilateral nerve grafting during radical retropubic prostatectomy: extended follow-up. Urology 58, 983–987 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Kim, E. D. et al. Interposition of sural nerve restores function of cavernous nerves resected during radical prostatectomy. J. Urol. 161, 188–192 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Nelson, B. A., Chang, S. S., Cookson, M. S. & Smith, J. A. J. Morbidity and efficacy of genitofemoral nerve grafts with radical retropubic prostatectomy. Urology 67, 789–792 (2006).

    Article  PubMed  Google Scholar 

  65. Chang, D. W., Wood, C. G., Kroll, S. S., Youssef, A. A. & Babaian, R. J. Cavernous nerve reconstruction to preserve erectile function following nonnervesparing radical retropubic prostatectomy: a prospective study. Plast. Reconstr. Surg. 111, 1174–1181 (2003).

    Article  PubMed  Google Scholar 

  66. Davis, J. W. et al. Randomized phase II trial evaluation of erectile function after attempted unilateral cavernous nerve-sparing retropubic radical prostatectomy with versus without unilateral sural nerve grafting for clinically localized prostate cancer. Eur. Urol. 55, 1135–1144 (2009).

    Article  PubMed  Google Scholar 

  67. Mulhall, J. P., Bivalacqua, T. J. & Becher, E. F. Standard operating procedure for the preservation of erectile function outcomes after radical prostatectomy. J. Sex. Med. 10, 195–203 (2013).

    Article  PubMed  Google Scholar 

  68. Hatzimouratidis, K. et al. Phosphodiesterase type 5 inhibitors in postprostatectomy erectile dysfunction: a critical analysis of the basic science rationale and clinical application. Eur. Urol. 55, 334–347 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Montorsi, F. et al. Recovery of spontaneous erectile function after nerve-sparing radical retropubic prostatectomy with and without early intracavernous injections of alprostadil: results of a prospective, randomized trial. J. Urol. 158, 1408–1410 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Fode, M., Ohl, D. A., Ralph, D. & Sønksen, J. Penile rehabilitation after radical prostatectomy: what the evidence really says. BJU Int. 112, 998–1008 (2013).

    PubMed  Google Scholar 

  71. Salonia, A. et al. Prevention and management of postprostatectomy sexual dysfunctions part 2: recovery and preservation of erectile function, sexual desire, and orgasmic function. Eur. Urol. 62, 273–286 (2012).

    Article  PubMed  Google Scholar 

  72. Vignozzi, L. et al. Effect of chronic tadalafil administration on penile hypoxia induced by cavernous neurotomy in the rat. J. Sex. Med. 3, 419–431 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Ferrini, M. G. et al. Vardenafil prevents fibrosis and loss of corporal smooth muscle that occurs after bilateral cavernosal nerve resection in the rat. Urology 68, 429–435 (2006).

    Article  PubMed  Google Scholar 

  74. Mulhall, J. P. et al. The functional and structural consequences of cavernous nerve injury are ameliorated by sildenafil citrate. J. Sex. Med. 5, 1126–1136 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Hlaing, S. M. et al. Sildenafil promotes neuroprotection of the pelvic ganglia neurons after bilateral cavernosal nerve resection in the rat. BJU Int. 111, 159–170 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Sirad, F. et al. Sildenafil promotes smooth muscle preservation and ameliorates fibrosis through modulation of extracellular matrix and tissue growth factor gene expression after bilateral cavernosal nerve resection in the rat. J. Sex. Med. 8, 1048–1060 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Garcia, L. A. et al. Sildenafil attenuates inflammation and oxidative stress in pelvic ganglia neurons after bilateral cavernosal nerve damage. Int. J. Mol. Sci. 15, 17204–17220 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Schwartz, E. J., Wong, P. & Greydon, R. J. Sildenafil preserves intracorporeal smooth muscle after radical retropubic prostatectomy. J. Urol. 171, 771–774 (2004).

    Article  PubMed  Google Scholar 

  79. Padma-Nathan, H. et al. Randomized, double-blind, placebo-controlled study of postoperative nightly sildenafil citrate for the prevention of erectile dysfunction after bilateral nerve-sparing radical prostatectomy. Int. J. Impot. Res. 20, 479–486 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. McCullough, A. R., Levine, L. A. & Padma-Nathan, H. Return of nocturnal erections and erectile function after bilateral nerve-sparing radical prostatectomy in men treated nightly with sildenafil citrate: subanalysis of a longitudinal randomized double-blind placebo-controlled trial. J. Sex. Med. 5, 476–484 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Montorsi, F. et al. Effect of nightly versus on-demand vardenafil on recovery of erectile function in men following bilateral nerve-sparing radical prostatectomy. Eur. Urol. 54, 924–931 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. McCullough, A. R. et al. Recovery of erectile function after nerve sparing radical prostatectomy and penile rehabilitation with nightly intraurethral alprostadil versus sildenafil citrate. J. Urol. 183, 2451–2456 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Pavlovich, C. P. et al. Nightly vs on-demand sildenafil for penile rehabilitation after minimally invasive nerve-sparing radical prostatectomy: results of a randomized double-blind trial with placebo. BJU Int. 112, 844–851 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Montorsi, F. et al. Effects of tadalafil treatment on erectile function recovery following bilateral nerve-sparing radical prostatectomy: a randomised placebo-controlled study (REACTT). Eur. Urol. 65, 587–596 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Lin, H. C., Yang, W. L., Zhang, J. L., Dai, Y. T. & Wang, R. Penile rehabilitation with a vacuum erectile device in an animal model is related to an antihypoxic mechanism: blood gas evidence. Asian J. Androl. 15, 387–390 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Yuan, J. et al. Molecular mechanisms of vacuum therapy in penile rehabilitation: a novel animal study. Eur. Urol. 58, 773–780 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Welliver, R. C. Jr, Mechlin, C., Goodwin, B., Alukal, J. P. & McCullough, A. R. A pilot study to determine penile oxygen saturation before and after vacuum therapy in patients with erectile dysfunction after radical prostatectomy. J. Sex. Med. 11, 1071–1077 (2014).

    Article  PubMed  Google Scholar 

  88. Raina, R. et al. Early use of vacuum constriction device following radical prostatectomy facilitates early sexual activity and potentially earlier return of erectile function. Int. J. Impot. Res. 18, 77–81 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Kohler, T. S. et al. A pilot study on the early use of the vacuum erection device after radical retropubic prostatectomy. BJU Int. 100, 858–862 (2007).

    Article  PubMed  Google Scholar 

  90. Canguven, O., Bailen, J., Fredriksson, W., Bock, D. & Burnett, A. L. Combination of vacuum erection device and PDE5 inhibitors as salvage therapy in PDE5 inhibitor nonresponders with erectile dysfunction. J. Sex. Med. 6, 2561–2567 (2009).

    Article  PubMed  Google Scholar 

  91. Raina, R., Agarwal, A., Allamaneni, S. S. R., Lakin, M. M. & Zippe, C. D. Sildenafil citrate and vacuum constriction device combination enhances sexual satisfaction in erectile dysfunction after radical prostatectomy. Urology 65, 360–364 (2005).

    Article  PubMed  Google Scholar 

  92. Garcia, F. J. & Brock, G. Current state of penile rehabilitation after radical prostatectomy. Curr. Opin. Urol. 20, 234–240 (2010).

    Article  PubMed  Google Scholar 

  93. Bochinski, D. et al. The effect of neural embryonic stem cell therapy in a rat model of cavernosal nerve injury. BJU Int. 94, 904–909 (2004).

    Article  PubMed  Google Scholar 

  94. Kendirci, M. et al. Transplantation of nonhematopoietic adult bone marrow stem/progenitor cells isolated by p75 nerve growth factor receptor into the penis rescues erectile function in a rat model of cavernous nerve injury. J. Urol. 184, 1560–1566 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Albersen, M. et al. Injections of adipose tissue-derived stem cells and stem cell lysate improve recovery of erectile function in a rat model of cavernous nerve injury. J. Sex. Med. 7, 3331–3340 (2010).

    Article  PubMed  Google Scholar 

  96. Albersen, M., Weyne, E. & Bivalacqua, T. J. Stem cell therapy for erectile dysfunction: progress and future directions. Sex. Med. Rev. 1, 50–64 (2013).

    Article  PubMed  Google Scholar 

  97. Ning, H. et al. Identification of an aberrant cell line among human adipose tissue-derived stem cell isolates. Differentiation 77, 172–180 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Qiu, X. et al. Both immediate and delayed intracavernous injection of autologous adipose-derived stromal vascular fraction enhances recovery of erectile function in a rat model of cavernous nerve injury. Eur. Urol. 62, 720–727 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  99. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  100. Yiou, R. et al. 599 Intra-cavernous injection of bone marrow stem cells is well tolerated and improve erectile function in patients with post-prostatectomy erectile dysfunction: Preliminary results of a phase I-II clinical trial. Eur. Urol. Suppl. 13, e599–e601 (2014).

    Article  Google Scholar 

  101. Sopko, N. A., Hannan, J. L. & Bivalacqua, T. J. Understanding and targeting the Rho kinase pathway in erectile dysfunction. Nat. Rev. Urol. 11, 622–628 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lin, G., Bella, A. J., Lue, T. F. & Lin, C. S. Brain-derived neurotrophic factor (BDNF) acts primarily via the JAK/STAT pathway to promote neurite growth in the major pelvic ganglion of the rat: Part 2. J. Sex. Med. 3, 821–829 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Viagra. US Food and Drug Adminstration [online], (2015).

  104. Mulhall, J., Land, S., Parker, M., Waters, W. B. & Flanigan, R. C. The use of an erectogenic pharmacotherapy regimen following radical prostatectomy improves recovery of spontaneous erectile function. J. Sex. Med. 2, 532–422 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

E.W., F.C. and M.A. are recipients of a grant from the European Society of Sexual Medicine.

Author information

Authors and Affiliations

Authors

Contributions

E.W., F.C. and M.A. researched data for the article and wrote the manuscript. All authors contributed to discussions of content and reviewed the article before submission.

Corresponding author

Correspondence to Maarten Albersen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weyne, E., Castiglione, F., Van der Aa, F. et al. Landmarks in erectile function recovery after radical prostatectomy. Nat Rev Urol 12, 289–297 (2015). https://doi.org/10.1038/nrurol.2015.72

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2015.72

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing