Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Brain-derived neurotrophic factor in urinary continence and incontinence

Key Points

  • Interactions between brain-derived neurotrophic factor (BDNF) and glutamate receptors participate in regulation of lower urinary tract function

  • BDNF-mediated glutamate signalling could have a role in the pharmacological mechanism of action of duloxetine

  • BDNF helps to maintain the continence mechanism by facilitation of pudendal nerve restoration after injury during childbirth

  • Both pudendal neuromodulation and onabotulinumtoxinA injection demonstrate a possible BDNF-related mechanism of action

  • Manipulation of BDNF levels, by electrical stimulation or other indirect methods, is a potential therapeutic strategy in the management of lower urinary tract symptoms

Abstract

Urinary incontinence adversely affects quality of life and results in an increased financial burden for the elderly. Accumulating evidence suggests a connection between neurotrophins, such as brain-derived neurotrophic factor (BDNF), and lower urinary tract function, particularly with regard to normal physiological function and the pathophysiological mechanisms of stress urinary incontinence (SUI) and bladder pain syndrome/interstitial cystitis (BPS/IC). The interaction between BDNF and glutamate receptors affects both bladder and external urethral sphincter function during micturition. Clinical findings indicate reduced BDNF levels in antepartum and postpartum women, potentially correlating with postpartum SUI. Experiments with animal models demonstrate that BDNF is decreased after simulated childbirth injury, thereby impeding the recovery of injured nerves and the restoration of continence. Treatment with exogenous BDNF facilitates neural recovery and the restoration of continence. Serotonin and noradrenaline reuptake inhibitors, used to treat both depression and SUI, result in enhanced BDNF levels. Understanding the neurophysiological roles of BDNF in maintaining normal urinary function and in the pathogenesis of SUI and BPS/IC could lead to future therapies based on these mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The neuromodulatory effects of BDNF in the dorsal root ganglion, in relation to lower urinary tract function.
Figure 2: Schematic diagram of the interaction between BDNF and glutamate receptors.
Figure 3: BDNF regulation of lower urinary tract function.

Similar content being viewed by others

References

  1. Abrams, P. et al. The standardisation of terminology of lower urinary tract function: report from the Standardisation Sub-committee of the International Continence Society. Neurourol. Urodyn. 21, 167–178 (2002).

    PubMed  Google Scholar 

  2. Chong, E. C., Khan, A. A. & Anger, J. T. The financial burden of stress urinary incontinence among women in the United States. Curr. Urol. Rep. 12, 358–362 (2011).

    Article  PubMed  Google Scholar 

  3. Hannestad, Y. S., Rortveit, G., Sandvik, H. & Hunskaar, S. A community-based epidemiological survey of female urinary incontinence: the Norwegian EPINCONT study. Epidemiology of Incontinence in the County of Nord-Trondelag. J. Clin. Epidemiol. 53, 1150–1157 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Sze, E. H., Jones, W. P., Ferguson, J. L., Barker, C. D. & Dolezal, J. M. Prevalence of urinary incontinence symptoms among black, white, and Hispanic women. Obstet. Gynecol. 99, 572–575 (2002).

    PubMed  Google Scholar 

  5. Subak, L. L. et al. Weight loss: a novel and effective treatment for urinary incontinence. J. Urol. 174, 190–195 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Milsom, I. et al. in Incontinence: 4th International Consultation on Incontinence 4th edn (eds Abrams, P., Cardozo, L., Khoury, S. & Wein, A.) 35–112 (Health Publication, 2009).

    Google Scholar 

  7. DeLancey, J. O. et al. Stress urinary incontinence: relative importance of urethral support and urethral closure pressure. J. Urol. 179, 2286–2290 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rortveit, G., Daltveit, A. K., Hannestad, Y. S. & Hunskaar, S. Urinary incontinence after vaginal delivery or cesarean section. N. Engl. J. Med. 348, 900–907 (2003).

    Article  PubMed  Google Scholar 

  9. Tunn, R. et al. MRI morphology of the levator ani muscle, endopelvic fascia, and urethra in women with stress urinary incontinence. Eur. J. Obstet. Gynecol. Reprod. Biol. 126, 239–245 (2006).

    Article  PubMed  Google Scholar 

  10. Lien, K. C., Morgan, D. M., DeLancey, J. O. & Ashton-Miller, J. A. Pudendal nerve stretch during vaginal birth: a 3D computer simulation. Am. J. Obstet. Gynecol. 192, 1669–1676 (2005).

    Article  PubMed  Google Scholar 

  11. Snooks, S. J., Swash, M., Mathers, S. E. & Henry, M. M. Effect of vaginal delivery on the pelvic floor: a 5-year follow-up. Br. J. Surg. 77, 1358–1360 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Allen, R. E., Hosker, G. L., Smith, A. R. & Warrell, D. W. Pelvic floor damage and childbirth: a neurophysiological study. Br. J. Obstet. Gynaecol. 97, 770–779 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Dolan, L. M., Hosker, G. L., Mallett, V. T., Allen, R. E. & Smith, A. R. Stress incontinence and pelvic floor neurophysiology 15 years after the first delivery. BJOG 110, 1107–1114 (2003).

    Article  PubMed  Google Scholar 

  14. Weidner, A. C., South, M. M., Sanders, D. B. & Stinnett, S. S. Change in urethral sphincter neuromuscular function during pregnancy persists after delivery. Am. J. Obstet. Gynecol. 201, 529.e1–529.e6 (2009).

    Article  Google Scholar 

  15. Kenton, K., Mahajan, S., Fitzgerald, M. P. & Brubaker, L. Recurrent stress incontinence is associated with decreased neuromuscular function in the striated urethral sphincter. Am. J. Obstet. Gynecol. 194, 1434–1437 (2006).

    Article  PubMed  Google Scholar 

  16. Miller, J. M., Ashton-Miller, J. A. & DeLancey, J. O. A pelvic muscle precontraction can reduce cough-related urine loss in selected women with mild SUI. J. Am. Geriatr. Soc. 46, 870–874 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Morkved, S. & Bo, K. Effect of postpartum pelvic floor muscle training in prevention and treatment of urinary incontinence: a one-year follow up. BJOG 107, 1022–1028 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Thor, K. B. & Katofiasc, M. A. Effects of duloxetine, a combined serotonin and norepinephrine reuptake inhibitor, on central neural control of lower urinary tract function in the chloralose-anesthetized female cat. J. Pharmacol. Exp. Ther. 274, 1014–1024 (1995).

    CAS  PubMed  Google Scholar 

  19. Dmochowski, R. R. et al. Duloxetine versus placebo for the treatment of North American women with stress urinary incontinence. J. Urol. 170, 1259–1263 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Mariappan, P., Alhasso, A., Ballantyne, Z., Grant, A. & N'Dow, J. Duloxetine, a serotonin and noradrenaline reuptake inhibitor (SNRI) for the treatment of stress urinary incontinence: a systematic review. Eur. Urol. 51, 67–74 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Lin, H. H., Sheu, B. C., Lo, M. C. & Huang, S. C. Comparison of treatment outcomes for imipramine for female genuine stress incontinence. Br. J. Obstet. Gynaecol. 106, 1089–1092 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Warren, J. W. et al. Evidence-based criteria for pain of interstitial cystitis/painful bladder syndrome in women. Urology 71, 444–448 (2008).

    Article  PubMed  Google Scholar 

  23. Berry, S. H. et al. Prevalence of symptoms of bladder pain syndrome/interstitial cystitis among adult females in the United States. J. Urol. 186, 540–544 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Warren, J. W. et al. Antecedent nonbladder syndromes in case-control study of interstitial cystitis/painful bladder syndrome. Urology 73, 52–57 (2009).

    Article  PubMed  Google Scholar 

  25. Elbadawi, A. Interstitial cystitis: a critique of current concepts with a new proposal for pathologic diagnosis and pathogenesis. Urology 49, 14–40 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Dimitrakov, J., Tchitalov, J., Zlatanov, T., Dikov, D. & Rawadi, G. Corticotropin-releasing hormone perturbations in interstitial cystitis patients: evidence for abnormal sympathetic activity. Urology 57, 128 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Elbadawi, A. E. & Light, J. K. Distinctive ultrastructural pathology of nonulcerative interstitial cystitis: new observations and their potential significance in pathogenesis. Urol. Int. 56, 137–162 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Lowe, E. M. et al. Increased nerve growth factor levels in the urinary bladder of women with idiopathic sensory urgency and interstitial cystitis. Br. J. Urol. 79, 572–577 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Zermann, D. H., Wunderlich, H., Schubert, J. & Ishigooka, M. Re: The diagnosis of interstitial cystitis revisited: lessons learned from the National Institutes of Health Interstitial Cystitis Database Study. J. Urol. 162, 807 (1999).

    PubMed  Google Scholar 

  30. Hanno, P. M. et al. AUA guideline for the diagnosis and treatment of interstitial cystitis/bladder pain syndrome. J. Urol. 185, 2162–2170 (2011).

    Article  PubMed  Google Scholar 

  31. Chao, M. V. Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat. Rev. Neurosci. 4, 299–309 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Kaplan, D. R. & Miller, F. D. Neurotrophin signal transduction in the nervous system. Curr. Opin. Neurobiol. 10, 381–391 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Minichiello, L. TrkB signalling pathways in LTP and learning. Nat. Rev. Neurosci. 10, 850–860 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Segal, R. A. Selectivity in neurotrophin signaling: theme and variations. Annu. Rev. Neurosci. 26, 299–330 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Schweigreiter, R. The dual nature of neurotrophins. Bioessays 28, 583–594 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Frias, B. et al. Brain-derived neurotrophic factor, acting at the spinal cord level, participates in bladder hyperactivity and referred pain during chronic bladder inflammation. Neuroscience 234, 88–102 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Lai, H. H. et al. Activation of spinal extracellular signal-regulated kinases (ERK) 1/2 is associated with the development of visceral hyperalgesia of the bladder. Pain 152, 2117–2124 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pinto, R. et al. Sequestration of brain derived nerve factor by intravenous delivery of TrkB-Ig2 reduces bladder overactivity and noxious input in animals with chronic cystitis. Neuroscience 166, 907–916 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Corrow, K. A. & Vizzard, M. A. Phosphorylation of extracellular signal-regulated kinases in urinary bladder in rats with cyclophosphamide-induced cystitis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R125–R134 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Murray, E., Malley, S. E., Qiao, L. Y., Hu, V. Y. & Vizzard, M. A. Cyclophosphamide induced cystitis alters neurotrophin and receptor tyrosine kinase expression in pelvic ganglia and bladder. J. Urol. 172, 2434–2439 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Qiao, L. Y., Yu, S. J., Kay, J. C. & Xia, C. M. In vivo regulation of brain-derived neurotrophic factor in dorsal root ganglia is mediated by nerve growth factor-triggered Akt activation during cystitis. PLoS ONE 8, e81547 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Traynelis, S. F. et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev. 62, 405–496 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kaczor, A. A. & Matosiuk, D. Molecular structure of ionotropic glutamate receptors. Curr. Med. Chem. 17, 2608–2635 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. de Groat, W. C. & Yoshimura, N. Pharmacology of the lower urinary tract. Annu. Rev. Pharmacol. Toxicol. 41, 691–721 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Yoshiyama, M., Roppolo, J. R. & de Groat, W. C. Effects of LY215490, a competitive alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor antagonist, on the micturition reflex in the rat. J. Pharmacol. Exp. Ther. 280, 894–904 (1997).

    CAS  PubMed  Google Scholar 

  46. Yoshiyama, M., Roppolo, J. R. & de Groat, W. C. Effects of MK-801 on the micturition reflex in the rat—possible sites of action. J. Pharmacol. Exp. Ther. 265, 844–850 (1993).

    CAS  PubMed  Google Scholar 

  47. Tanaka, H., Kakizaki, H., Shibata, T., Ameda, K. & Koyanagi, T. Effects of a selective metabotropic glutamate receptor agonist on the micturition reflex pathway in urethane-anesthetized rats. Neurourol. Urodyn. 22, 611–616 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Hu, Y. et al. The role of metabotropic glutamate receptor mGlu5 in control of micturition and bladder nociception. Neurosci. Lett. 450, 12–17 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Guarneri, L. et al. Effect of selective antagonists of group I metabotropic glutamate receptors on the micturition reflex in rats. BJU Int. 102, 890–898 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Yoshiyama, M. & de Groat, W. C. Supraspinal and spinal alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid and N-methyl-D-aspartate glutamatergic control of the micturition reflex in the urethane-anesthetized rat. Neuroscience 132, 1017–1026 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Matsumoto, T. et al. Brain-derived neurotrophic factor enhances depolarization-evoked glutamate release in cultured cortical neurons. J. Neurochem. 79, 522–530 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Poo, M. M. Neurotrophins as synaptic modulators. Nat. Rev. Neurosci. 2, 24–32 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Tyler, W. J., Perrett, S. P. & Pozzo-Miller, L. D. The role of neurotrophins in neurotransmitter release. Neuroscientist 8, 524–531 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lin, S. Y. et al. BDNF acutely increases tyrosine phosphorylation of the NMDA receptor subunit 2B in cortical and hippocampal postsynaptic densities. Brain Res. Mol. Brain Res. 55, 20–27 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Levine, E. S., Crozier, R. A., Black, I. B. & Plummer, M. R. Brain-derived neurotrophic factor modulates hippocampal synaptic transmission by increasing N-methyl-D-aspartic acid receptor activity. Proc. Natl Acad. Sci. USA 95, 10235–10239 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mizuno, M., Yamada, K., He, J., Nakajima, A. & Nabeshima, T. Involvement of BDNF receptor TrkB in spatial memory formation. Learn. Mem. 10, 108–115 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Narisawa-Saito, M. et al. Growth factor-mediated Fyn signaling regulates alpha-amino-3- hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor expression in rodent neocortical neurons. Proc. Natl Acad. Sci. USA 96, 2461–2466 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kuczewski, N., Porcher, C., Lessmann, V., Medina, I. & Gaiarsa, J. L. Activity-dependent dendritic release of BDNF and biological consequences. Mol. Neurobiol. 39, 37–49 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Caldeira, M. V. et al. BDNF regulates the expression and traffic of NMDA receptors in cultured hippocampal neurons. Mol. Cell. Neurosci. 35, 208–219 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Caldeira, M. V. et al. Brain-derived neurotrophic factor regulates the expression and synaptic delivery of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunits in hippocampal neurons. J. Biol. Chem. 282, 12619–12628 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Kim, J. H. et al. Brain-derived neurotrophic factor uses CREB and Egr3 to regulate NMDA receptor levels in cortical neurons. J. Neurochem. 120, 210–219 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Hayashi, T., Umemori, H., Mishina, M. & Yamamoto, T. The AMPA receptor interacts with and signals through the protein tyrosine kinase Lyn. Nature 397, 72–76 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Wu, X. et al. AMPA protects cultured neurons against glutamate excitotoxicity through a phosphatidylinositol 3-kinase-dependent activation in extracellular signal-regulated kinase to upregulate BDNF gene expression. J. Neurochem. 90, 807–818 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Tao, X., Finkbeiner, S., Arnold, D. B., Shaywitz, A. J. & Greenberg, M. E. Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 20, 709–726 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. O'Neill, M. J., Bleakman, D., Zimmerman, D. M. & Nisenbaum, E. S. AMPA receptor potentiators for the treatment of CNS disorders. Curr. Drug Targets CNS Neurol. Disord. 3, 181–194 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Collingridge, G. L., Peineau, S., Howland, J. G. & Wang, Y. T. Long-term depression in the CNS. Nat. Rev. Neurosci. 11, 459–473 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Mattson, M. P. Glutamate and neurotrophic factors in neuronal plasticity and disease. Ann. N. Y. Acad. Sci. 1144, 97–112 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Casillas-Espinosa, P. M., Powell, K. L. & O'Brien, T. J. Regulators of synaptic transmission: roles in the pathogenesis and treatment of epilepsy. Epilepsia 53 (Suppl. 9), 41–58 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Hashimoto, K., Shimizu, E. & Iyo, M. Critical role of brain-derived neurotrophic factor in mood disorders. Brain Res. Brain Res. Rev. 45, 104–114 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Lee, B. H., Kim, H., Park, S. H. & Kim, Y. K. Decreased plasma BDNF level in depressive patients. J. Affect. Disord. 101, 239–244 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Shirayama, Y., Chen, A. C., Nakagawa, S., Russell, D. S. & Duman, R. S. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J. Neurosci. 22, 3251–3261 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ball, S., Marangell, L. B., Lipsius, S. & Russell, J. M. Brain-derived neurotrophic factor in generalized anxiety disorder: results from a duloxetine clinical trial. Prog. Neuropsychopharmacol. Biol. Psychiatry 43, 217–221 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Calabrese, F. et al. Long-Term duloxetine treatment normalizes altered brain-derived neurotrophic factor expression in serotonin transporter knockout rats through the modulation of specific neurotrophin isoforms. Mol. Pharmacol. 77, 846–853 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Duman, R. S. & Monteggia, L. M. A neurotrophic model for stress-related mood disorders. Biol. Psychiatry 59, 1116–1127 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Schmidt, H. D. & Duman, R. S. The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behavior. Behav. Pharmacol. 18, 391–418 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Sen, S., Duman, R. & Sanacora, G. Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications. Biol. Psychiatry 64, 527–532 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Duman, R. S. & Voleti, B. Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents. Trends Neurosci. 35, 47–56 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dwivedi, Y. et al. Reduced activation and expression of ERK1/2 MAP kinase in the post-mortem brain of depressed suicide subjects. J. Neurochem. 77, 916–928 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Hsiung, S. C. et al. Attenuated 5-HT1A receptor signaling in brains of suicide victims: involvement of adenylyl cyclase, phosphatidylinositol 3-kinase, Akt and mitogen-activated protein kinase. J. Neurochem. 87, 182–194 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Burgard, E. C., Fraser, M. O. & Thor, K. B. Serotonergic modulation of bladder afferent pathways. Urology 62, 10–15 (2003).

    Article  PubMed  Google Scholar 

  81. Ghoniem, G. M. et al. A randomized controlled trial of duloxetine alone, pelvic floor muscle training alone, combined treatment and no active treatment in women with stress urinary incontinence. J. Urol. 173, 1647–1653 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Millard, R. J., Moore, K., Rencken, R., Yalcin, I. & Bump, R. C. Duloxetine vs placebo in the treatment of stress urinary incontinence: a four-continent randomized clinical trial. BJU Int. 93, 311–318 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Espey, M. J., Downie, J. W. & Fine, A. Effect of 5-HT receptor and adrenoceptor antagonists on micturition in conscious cats. Eur. J. Pharmacol. 221, 167–170 (1992).

    Article  CAS  PubMed  Google Scholar 

  84. Miyazato, M. et al. Effect of duloxetine, a norepinephrine and serotonin reuptake inhibitor, on sneeze-induced urethral continence reflex in rats. Am. J. Physiol. Renal Physiol. 295, F264–F271 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yoshimura, N., Sasa, M., Yoshida, O. & Takaori, S. Mediation of micturition reflex by central norepinephrine from the locus coeruleus in the cat. J. Urol. 143, 840–843 (1990).

    Article  CAS  PubMed  Google Scholar 

  86. Thor, K. B. Targeting serotonin and norepinephrine receptors in stress urinary incontinence. Int. J. Gynaecol. Obstet. 86 (Suppl. 1), S38–S52 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Jost, W. & Marsalek, P. Duloxetine: mechanism of action at the lower urinary tract and Onuf's nucleus. Clin. Auton. Res. 14, 220–227 (2004).

    Article  PubMed  Google Scholar 

  88. Di Rezze, S. et al. Duloxetine for the treatment of overactive bladder syndrome in multiple sclerosis: a pilot study. Clin. Neuropharmacol. 35, 231–234 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Schwen, Z. et al. Inhibition of bladder overactivity by duloxetine in combination with foot stimulation or WAY-100635 treatment in cats. Am. J. Physiol. Renal Physiol. 305, F1663–F1668 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bent, A. E. et al. Duloxetine compared with placebo for the treatment of women with mixed urinary incontinence. Neurourol. Urodyn. 27, 212–221 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Ramage, A. G. The role of central 5-hydroxytryptamine (5-HT, serotonin) receptors in the control of micturition. Br. J. Pharmacol. 147 (Suppl. 2), S120–S131 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Schuessler, B. What do we know about duloxetine's mode of action? Evidence from animals to humans. BJOG 113 (Suppl. 1), 5–9 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Lommatzsch, M. et al. Maternal serum concentrations of BDNF and depression in the perinatal period. Psychoneuroendocrinology 31, 388–394 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Vega, S. R. et al. Responses of serum neurotrophic factors to exercise in pregnant and postpartum women. Psychoneuroendocrinology 36, 220–227 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Kim, D. R., Gonzalez, J. M., Sammel, M. D., Parry, S. & Epperson, C. N. Brain derived neurotrophic factor is altered in human pregnancy. Clinical Neuropsychiatry 9, 207–211 (2012).

    Google Scholar 

  96. Garcés, M. F. et al. Brain-Derived Neurotrophic Factor is expressed in rat and human placenta and its serum levels are similarly regulated throughout pregnancy in both species. Clin. Endocrinol. (Oxf.) 81, 141–151 (2014).

    Article  CAS  Google Scholar 

  97. Aksu, I. et al. Maternal treadmill exercise during pregnancy decreases anxiety and increases prefrontal cortex VEGF and BDNF levels of rat pups in early and late periods of life. Neurosci. Lett. 516, 221–225 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Pinheiro, R. T. et al. Brain-derived neurotrophic factor levels in women with postpartum affective disorder and suicidality. Neurochem. Res. 37, 2229–2234 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Fujita, K. et al. Differential expression and the anti-apoptotic effect of human placental neurotrophins and their receptors. Placenta 32, 737–744 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Mayeur, S. et al. Placental BDNF/TrkB signaling system is modulated by fetal growth disturbances in rat and human. Placenta 31, 785–791 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Dhobale, M., Mehendale, S., Pisal, H., D'Souza, V. & Joshi, S. Association of brain-derived neurotrophic factor and tyrosine kinase B receptor in pregnancy. Neuroscience 216, 31–37 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Karege, F. et al. Low brain-derived neurotrophic factor (BDNF) levels in serum of depressed patients probably results from lowered platelet BDNF release unrelated to platelet reactivity. Biol. Psychiatry 57, 1068–1072 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Fujimura, H. et al. Brain-derived neurotrophic factor is stored in human platelets and released by agonist stimulation. Thromb. Haemost. 87, 728–734 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Burrows, R. F. & Kelton, J. G. Thrombocytopenia at delivery: a prospective survey of 6715 deliveries. Am. J. Obstet. Gynecol. 162, 731–734 (1990).

    Article  CAS  PubMed  Google Scholar 

  105. Franklin, T. B. & Perrot-Sinal, T. S. Sex and ovarian steroids modulate brain-derived neurotrophic factor (BDNF) protein levels in rat hippocampus under stressful and non-stressful conditions. Psychoneuroendocrinology 31, 38–48 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Kodomari, I., Wada, E., Nakamura, S. & Wada, K. Maternal supply of BDNF to mouse fetal brain through the placenta. Neurochem. Int. 54, 95–98 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Whittaker, P. G., Macphail, S. & Lind, T. Serial hematologic changes and pregnancy outcome. Obstet. Gynecol. 88, 33–39 (1996).

    Article  CAS  PubMed  Google Scholar 

  108. Damaser, M. S., Broxton-King, C., Ferguson, C., Kim, F. J. & Kerns, J. M. Functional and neuroanatomical effects of vaginal distention and pudendal nerve crush in the female rat. J. Urol. 170, 1027–1031 (2003).

    Article  PubMed  Google Scholar 

  109. Gill, B. C., Damaser, M. S., Vasavada, S. P. & Goldman, H. B. Stress incontinence in the era of regenerative medicine: reviewing the importance of the pudendal nerve. J. Urol. 190, 22–28 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Kerns, J. M. et al. Effects of pudendal nerve injury in the female rat. Neurourol. Urodyn. 19, 53–69 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Pan, H. Q. et al. Dual simulated childbirth injury delays anatomic recovery. Am. J. Physiol. Renal Physiol. 296, F277–F283 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Gordon, T. The role of neurotrophic factors in nerve regeneration. Neurosurg. Focus 26, E3 (2009).

    Article  PubMed  Google Scholar 

  113. Omura, T. et al. Different expressions of BDNF, NT3, and NT4 in muscle and nerve after various types of peripheral nerve injuries. J. Peripher. Nerv. Syst. 10, 293–300 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Gill, B. C., Moore, C. & Damaser, M. S. Postpartum stress urinary incontinence: lessons from animal models. Expert Rev. Obstet. Gynecol. 5, 567–580 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Sakuma, K. et al. A possible role for BDNF, NT-4 and TrkB in the spinal cord and muscle of rat subjected to mechanical overload, bupivacaine injection and axotomy. Brain Res. 907, 1–19 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Wells, D. G., McKechnie, B. A., Kelkar, S. & Fallon, J. R. Neurotrophins regulate agrin-induced postsynaptic differentiation. Proc. Natl Acad. Sci. USA 96, 1112–1117 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Mousavi, K. & Jasmin, B. J. BDNF is expressed in skeletal muscle satellite cells and inhibits myogenic differentiation. J. Neurosci. 26, 5739–5749 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Jiang, H. H. et al. Dual simulated childbirth injuries result in slowed recovery of pudendal nerve and urethral function. Neurourol. Urodyn. 28, 229–235 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Song, Q. X. et al. Long-term effects of simulated childbirth injury on function and innervation of the urethra. Neurourol. Urodyn. http://dx.doi.org/10.1002/nau.22561.

  120. Gill, B. C. et al. Neurotrophin therapy improves recovery of the neuromuscular continence mechanism following simulated birth injury in rats. Neurourol. Urodyn. 32, 82–87 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Fritel, X., Ringa, V., Quiboeuf, E. & Fauconnier, A. Female urinary incontinence, from pregnancy to menopause: a review of epidemiological and pathophysiological findings. Acta Obstet. Gynecol. Scand. 91, 901–910 (2012).

    Article  PubMed  Google Scholar 

  122. Ashton-Miller, J. A. & DeLancey, J. O. Functional anatomy of the female pelvic floor. Ann. N. Y. Acad. Sci. 1101, 266–296 (2007).

    Article  PubMed  Google Scholar 

  123. Bartley, J., Gilleran, J. & Peters, K. Neuromodulation for overactive bladder. Nat. Rev. Urol. 10, 513–521 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Peters, K. M., Feber, K. M. & Bennett, R. C. Sacral versus pudendal nerve stimulation for voiding dysfunction: a prospective, single-blinded, randomized, crossover trial. Neurourol. Urodyn. 24, 643–647 (2005).

    Article  PubMed  Google Scholar 

  125. Peters, K. M., Killinger, K. A., Boguslawski, B. M. & Boura, J. A. Chronic pudendal neuromodulation: expanding available treatment options for refractory urologic symptoms. Neurourol. Urodyn. 29, 1267–1271 (2010).

    Article  PubMed  Google Scholar 

  126. Mally, A. D. et al. Role of opioid and metabotropic glutamate 5 receptors in pudendal inhibition of bladder overactivity in cats. J. Urol. 189, 1574–1579 (2013).

    Article  CAS  PubMed  Google Scholar 

  127. Schwen, Z. et al. Involvement of 5-HT3 receptors in pudendal inhibition of bladder overactivity in cats. Am. J. Physiol. Renal Physiol. 305, F663–F671 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Jiang, H. H. et al. Effects of acute selective pudendal nerve electrical stimulation after simulated childbirth injury. Am. J. Physiol. Renal Physiol. 304, F239–F247 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Cruz, C. D. Neurotrophins in bladder function: what do we know and where do we go from here? Neurourol. Urodyn. 33, 39–45 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Kuo, H. C., Liu, H. T. & Chancellor, M. B. Urinary nerve growth factor is a better biomarker than detrusor wall thickness for the assessment of overactive bladder with incontinence. Neurourol. Urodyn. 29, 482–487 (2010).

    PubMed  Google Scholar 

  131. Liu, H. T., Tyagi, P., Chancellor, M. B. & Kuo, H. C. Urinary nerve growth factor but not prostaglandin E2 increases in patients with interstitial cystitis/bladder pain syndrome and detrusor overactivity. BJU Int. 106, 1681–1685 (2010).

    Article  PubMed  Google Scholar 

  132. Kim, S. W. et al. Urinary nerve growth factor correlates with the severity of urgency and pain. Int. Urogynecol. J. http://dx.doi.org/10.1007/s00192-014-2424–8.

  133. Wang, L. W., Han, X. M., Chen, C. H., Ma, Y. & Hai, B. Urinary brain-derived neurotrophic factor: a potential biomarker for objective diagnosis of overactive bladder. Int. Urol. Nephrol. 46, 341–347 (2014).

    Article  CAS  PubMed  Google Scholar 

  134. Bhide, A. A., Cartwright, R., Khullar, V. & Digesu, G. A. Biomarkers in overactive bladder. Int. Urogynecol. J. 24, 1065–1072 (2013).

    Article  PubMed  Google Scholar 

  135. Seth, J., Khan, M. S., Dasgupta, P. & Sahai, A. Botulinum toxin-what urologic uses does the data support? Curr. Urol. Rep. 14, 227–234 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Pinto, R. et al. Trigonal injection of botulinum toxin A in patients with refractory bladder pain syndrome/interstitial cystitis. Eur. Urol. 58, 360–365 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. Pinto, R. et al. Ulcerative and nonulcerative forms of bladder pain syndrome/interstitial cystitis do not differ in symptom intensity or response to onabotulinum toxin A. Urology 83, 1030–1034 (2014).

    Article  PubMed  Google Scholar 

  138. Chancellor, M. B. et al. Drug Insight: biological effects of botulinum toxin A in the lower urinary tract. Nat. Clin. Pract. Urol. 5, 319–328 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Apostolidis, A. et al. Decreased sensory receptors P2X3and TRPV1 in suburothelial nerve fibers following intradetrusor injections of botulinum toxin for human detrusor overactivity. J. Urol. 174, 977–982 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Chuang, Y. C., Yoshimura, N., Huang, C. C., Chiang, P. H. & Chancellor, M. B. Intravesical botulinum toxin a administration produces analgesia against acetic acid induced bladder pain responses in rats. J. Urol. 172, 1529–1532 (2004).

    Article  CAS  PubMed  Google Scholar 

  141. Morenilla-Palao, C., Planells-Cases, R., Garcia-Sanz, N. & Ferrer-Montiel, A. Regulated exocytosis contributes to protein kinase C potentiation of vanilloid receptor activity. J. Biol. Chem. 279, 25665–25672 (2004).

    Article  CAS  PubMed  Google Scholar 

  142. Rapp, D. E., Turk, K. W., Bales, G. T. & Cook, S. P. Botulinum toxin type a inhibits calcitonin gene-related peptide release from isolated rat bladder. J. Urol. 175, 1138–1142 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Duggan, M. J. et al. Inhibition of release of neurotransmitters from rat dorsal root ganglia by a novel conjugate of a Clostridium botulinum toxin A endopeptidase fragment and Erythrina cristagalli lectin. J. Biol. Chem. 277, 34846–34852 (2002).

    Article  CAS  PubMed  Google Scholar 

  144. Rachaneni, S., Arya, P. & Latthe, P. Urinary nerve growth factor: a biomarker of detrusor overactivity? A systematic review. Int. Urogynecol. J. 24, 1603–1609 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Rehabilitation Research & Development Service of the US Department of Veterans Affairs Office of Research and Development and The Cleveland Clinic.

Author information

Authors and Affiliations

Authors

Contributions

Q.-X.S. and M.S.D. researched the data for the article. Q.-X.S., C.J.C. and M.S.D. contributed substantially to discussion of the content. Q.-X.S., C.J.C., L.L. and M.S.D. wrote the article. All authors contributed to reviewing and editing the article before submission.

Corresponding author

Correspondence to Margot S. Damaser.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, QX., Chermansky, C., Birder, L. et al. Brain-derived neurotrophic factor in urinary continence and incontinence. Nat Rev Urol 11, 579–588 (2014). https://doi.org/10.1038/nrurol.2014.244

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2014.244

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing