Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bedfellows: mycobacteria and rheumatoid arthritis in the era of biologic therapy

Abstract

In modern times a relationship between tuberculosis (TB) and rheumatoid arthritis (RA) has been firmly recognized, and is primarily attributable to the immunosuppressive therapies used to treat RA. Whereas TB can complicate the successful management of RA, nontuberculous mycobacteria have now perhaps become as important as (if not more so than) TB in the setting of RA, and can represent an even greater challenge to the rheumatologist wishing to use immunosuppressive therapies. This article reviews our most recent understanding of the epidemiological and clinical aspects of mycobacterial disease as it relates to RA, and the existing and emerging immunosuppressive therapies used to treat this disease.

Key Points

  • Patients with rheumatoid arthritis (RA) are at higher risk of disease from both tuberculosis (TB) and nontuberculous mycobacteria (NTM)

  • Some immunosuppressive therapies elevate the risk of mycobacterial disease, most clearly prednisone and TNF antagonists; other agents, such as tofacitinib, might also carry increased risk

  • In North America and other regions of low TB prevalence, NTM disease is more common than TB, particularly among patients with RA

  • Screening for latent TB infection prior to the start of therapy with biologic agents or tofacitinib is necessary, and can prevent overt TB disease

  • The safety of biologic therapy in patients with active NTM disease is unclear, and it should be avoided if possible in such patients

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Estimated global TB incidence rates, 2011.
Figure 2: Crude incidence rates of TB and NTM disease observed in the general population and in patients with rheumatoid arthritis in a large northern California health maintenance organization 2000–2008.28

Similar content being viewed by others

References

  1. Forestier, J. Rheumatoid arthritis and its treatment with gold salts. J. Lab. Clin. Med. 20, 827–840 (1935).

    Google Scholar 

  2. Baum, J. Infection in rheumatoid arthritis. Arthritis Rheum. 14, 135–137 (1971).

    CAS  PubMed  Google Scholar 

  3. Doran, M. F., Crowson, C. S., Pond, G. R., O'Fallon, W. M. & Gabriel, S. E. Frequency of infection in patients with rheumatoid arthritis compared with controls: A population-based study. Arthritis Rheum. 46, 2287–2293 (2002).

    Article  Google Scholar 

  4. Wolfe, F. et al. The mortality of rheumatoid arthritis. Arthritis Rheum. 37, 481–494 (1994).

    Article  CAS  Google Scholar 

  5. Wagner, U. G., Koetz, K., Weyand, C. M. & Goronzy, J. J. Perturbation of the T cell repertoire in rheumatoid arthritis. Proc. Natl Acad. Sci. USA 95, 14447–14452 (1998).

    Article  CAS  Google Scholar 

  6. Sihvonen, S., Korpela, M., Laippala, P., Mustonen, J. & Pasternack, A. Death rates and causes of death in patients with rheumatoid arthritis: A population-based study. Scand. J. Rheumatol. 33, 221–227 (2004).

    Article  CAS  Google Scholar 

  7. Bryl, E. et al. Modulation of CD28 expression with anti-tumor necrosis factor α therapy in rheumatoid arthritis. Arthritis Rheum. 52, 2996–3003 (2005).

    Article  CAS  Google Scholar 

  8. Choy, E. H., Kavanaugh, A. F. & Jones, S. A. The problem of choice: current biologic agents and future prospects in RA. Nat. Rev. Rheumatol. 9, 154–163 (2013).

    Article  CAS  Google Scholar 

  9. O'Shea, J. J., Laurence, A. & McInnes, I. B. Back to the future: oral targeted therapy for RA and other autoimmune diseases. Nat. Rev. Rheumatol. 9, 173–182 (2013).

    Article  Google Scholar 

  10. Winthrop, K. L. & Chiller, T. Preventing and treating biologic-associated opportunistic infections. Nat. Rev. Rheumatol. 5, 405–410 (2009).

    Article  CAS  Google Scholar 

  11. Kendall, B. A. & Winthrop, K. L. Update on the epidemiology of pulmonary nontuberculous mycobacterial infections. Semin. Respir. Crit. Care Med. 34, 87–94 (2013).

    Article  Google Scholar 

  12. Griffith, D. E. et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am. J. Respir. Crit. Care Med. 175, 367–416 (2007).

    Article  CAS  Google Scholar 

  13. Stone, A. B., Schelonka, R. L., Drehner, D. M., McMahon, D. P. & Ascher, D. P. Disseminated mycobacterium avium complex in non-human immunodeficiency virus-infected pediatric patients. Pediatr. Infect. Dis. J. 11, 960–964 (1992).

    Article  CAS  Google Scholar 

  14. Winthrop, K. L. et al. An outbreak of mycobacterial furunculosis associated with footbaths at a nail salon. N. Engl. J. Med. 346, 1366–1371 (2002).

    Article  Google Scholar 

  15. Aubry, A., Chosidow, O., Caumes, E., Robert, J. & Cambau, E. Sixty-three cases of mycobacterium marinum infection: Clinical features, treatment, and antibiotic susceptibility of causative isolates. Arch. Intern. Med. 162, 1746–1752 (2002).

    Article  Google Scholar 

  16. Band, J. D. et al. Peritonitis due to a mycobacterium chelonei-like organism associated with intermittent chronic peritoneal dialysis. J. Infect. Dis. 145, 9–17 (1982).

    Article  CAS  Google Scholar 

  17. Saubolle, M. A., Kiehn, T. E., White, M. H., Rudinsky, M. F. & Armstrong, D. Mycobacterium haemophilum: Microbiology and expanding clinical and geographic spectra of disease in humans. Clin. Microbiol. Rev. 9, 435–447 (1996).

    Article  CAS  Google Scholar 

  18. Wallace, R. J. Jr. et al. Clinical significance, biochemical features, and susceptibility patterns of sporadic isolates of the mycobacterium chelonae-like organism. J. Clin. Microbiol. 31, 3231–3239 (1993).

    PubMed  PubMed Central  Google Scholar 

  19. van Ingen, J. et al. Pulmonary mycobacterium szulgai infection and treatment in a patient receiving anti-tumor necrosis factor therapy. Nat. Clin. Pract. Rheumatol. 3, 414–419 (2007).

    Article  Google Scholar 

  20. US CDC. Targeted tuberculin testing and treatment of latent tuberculosis infection. Centers for Disease Control and Prevention [online], (2000).

  21. World Health Organization. Global tuberculosis report 2012. World Health Organization [online], (2012).

  22. World Health Organization. Leprosy, Fact sheet N°.101. World Health Organization [online], (2012).

  23. Prevots, D. R. et al. Nontuberculous mycobacterial lung disease prevalence at four integrated health care delivery systems. Am. J. Respir. Crit. Care Med. 182, 970–976 (2010).

    Article  Google Scholar 

  24. Winthrop, K. L. et al. Pulmonary nontuberculous mycobacterial disease prevalence and clinical features: An emerging public health disease. Am. J. Respir. Crit. Care Med. 182, 977–982 (2010).

    Article  Google Scholar 

  25. Cassidy, P. M., Hedberg, K., Saulson, A., McNelly, E. & Winthrop, K. L. Nontuberculous mycobacterial disease prevalence and risk factors: a changing epidemiology. Clin. Infect. Dis. 49, e124–e129 (2009).

    Article  Google Scholar 

  26. Winthrop, K. L., Varley, C. D., Ory, J., Cassidy, P. M. & Hedberg, K. Pulmonary disease associated with nontuberculous mycobacteria, Oregon, USA. Emerg. Infect. Dis. 17, 1760–1761 (2011).

    Article  Google Scholar 

  27. Adjemian, J. et al. Spatial clusters of nontuberculous mycobacterial lung disease in the united states. Am. J. Respir. Crit. Care Med. 186, 553–558 (2012).

    Article  Google Scholar 

  28. Winthrop, K. et al. Mycobacterial diseases and antitumour necrosis factor therapy in USA. Ann. Rheum. Dis. 72, 37–42 (2013).

    Article  CAS  Google Scholar 

  29. Cortet, B. et al. Use of high resolution computed tomography of the lungs in patients with rheumatoid arthritis. Ann. Rheum. Dis. 54, 815–819 (1995).

    Article  CAS  Google Scholar 

  30. Kim, J. S. et al. Nontuberculous mycobacterial infection: CT scan findings, genotype, and treatment responsiveness. Chest 128, 3863–3869 (2005).

    Article  Google Scholar 

  31. Zrour, S. H. et al. Correlations between high-resolution computed tomography of the chest and clinical function in patients with rheumatoid arthritis. prospective study in 75 patients. Joint Bone Spine 72, 41–47 (2005).

    Article  Google Scholar 

  32. Andrejak, C. et al. Chronic respiratory disease, inhaled corticosteroids and risk of non-tuberculous mycobacteriosis. Thorax 68, 256–262 (2013).

    Article  Google Scholar 

  33. Schatz, M., Patterson, R. Kloner, R. & Falk, J. The prevalence of tuberculosis and positive tuberculin skin tests in a steroid-treated asthmatic population. Ann. Intern. Med. 84, 261–265 (1976).

    Article  CAS  Google Scholar 

  34. Bovornkitti, S., Kangsadal, P. Sathirapat, P. & Oonsombatti, P. Reversion and reconversion rate of tuberculin skin test reactions in correlation with use of prednisone. Dis. Chest 38, 51–55 (1960).

    Article  CAS  Google Scholar 

  35. Jick, S. S., Lieberman, E. S., Rahman, M. U. & Choi, H. K. Glucocorticoid use, other associated factors, and the risk of tuberculosis. Arthritis Rheum. 55, 19–26 (2006).

    Article  Google Scholar 

  36. Brassard, P., Suissa, S., Kezouh, A. & Ernst, P. Inhaled corticosteroids and risk of tuberculosis in patients with respiratory diseases. Am. J. Respir. Crit. Care Med. 183, 675–678 (2011).

    Article  CAS  Google Scholar 

  37. Dirac, M. A. et al. Environment or host?: A case–control study of risk factors for mycobacterium avium complex lung disease. Am. J. Respir. Crit. Care Med. 186, 684–691 (2012).

    Article  Google Scholar 

  38. Hojo, M. et al. Increased risk of nontuberculous mycobacterial infection in asthmatic patients using long-term inhaled corticosteroid therapy. Respirology 17, 185–190 (2012).

    Article  Google Scholar 

  39. Bekker, L. G., Freeman, S., Murray, P. J., Ryffel, B. & Kaplan, G. TNF-α controls intracellular mycobacterial growth by both inducible nitric oxide synthase-dependent and inducible nitric oxide synthase-independent pathways. J. Immunol. 166, 6728–6734 (2001).

    Article  CAS  Google Scholar 

  40. Clay, H., Volkman, H. E. & Ramakrishnan, L. Tumor necrosis factor signaling mediates resistance to mycobacteria by inhibiting bacterial growth and macrophage death. Immunity 29, 283–294 (2008).

    Article  CAS  Google Scholar 

  41. Lin, P. L. et al. Tumor necrosis factor neutralization results in disseminated disease in acute and latent mycobacterium tuberculosis infection with normal granuloma structure in a cynomolgus macaque model. Arthritis Rheum. 62, 340–350 (2010).

    Article  CAS  Google Scholar 

  42. Wolfe, F., Michaud, K., Anderson, J. & Urbansky, K. Tuberculosis infection in patients with rheumatoid arthritis and the effect of infliximab therapy. Arthritis Rheum. 50, 372–379 (2004).

    Article  CAS  Google Scholar 

  43. Askling, J. et al. Risk and case characteristics of tuberculosis in rheumatoid arthritis associated with tumor necrosis factor antagonists in Sweden. Arthritis Rheum. 52, 1986–1992 (2005).

    Article  CAS  Google Scholar 

  44. Gómez-Reino, J. J. et al. Treatment of rheumatoid arthritis with tumor necrosis factor inhibitors may predispose to significant increase in tuberculosis risk: A multicenter active-surveillance report. Arthritis Rheum. 48, 2122–2127 (2003).

    Article  Google Scholar 

  45. Carmona, L. et al. Effectiveness of recommendations to prevent reactivation of latent tuberculosis infection in patients treated with tumor necrosis factor antagonists. Arthritis Rheum. 52, 1766–1772 (2005).

    Article  CAS  Google Scholar 

  46. Dixon, W. G. et al. Drug-specific risk of tuberculosis in patients with rheumatoid arthritis treated with anti-TNF therapy: Results from the British Society for Rheumatology biologics register (BSRBR). Ann. Rheum. Dis. 69, 522–528 (2010).

    Article  CAS  Google Scholar 

  47. Tubach, F. et al. Risk of tuberculosis is higher with anti-tumor necrosis factor monoclonal antibody therapy than with soluble tumor necrosis factor receptor therapy: The three-year prospective French research axed on tolerance of biotherapies registry. Arthritis Rheum. 60, 1884–1894 (2009).

    Article  CAS  Google Scholar 

  48. Bruns, H. et al. Anti-TNF immunotherapy reduces CD8+ T cell-mediated antimicrobial activity against mycobacterium tuberculosis in humans. J. Clin. Invest. 119, 1167–1177 (2009).

    Article  CAS  Google Scholar 

  49. Saliu, O. Y., Sofer, C., Stein, D. S., Schwander, S. K. & Wallis, R. S. Tumor-necrosis-factor blockers: Differential effects on mycobacterial immunity. J. Infect. Dis. 194, 486–492 (2006).

    Article  CAS  Google Scholar 

  50. Plessner, H. L. et al. Neutralization of tumor necrosis factor (TNF) by antibody but not TNF receptor fusion molecule exacerbates chronic murine tuberculosis. J. Infect. Dis. 195, 1643–1650 (2007).

    Article  CAS  Google Scholar 

  51. Winthrop, K. L., Yamashita, S., Beekmann, S. E. & Polgreen, P. M., Infectious Diseases Society of America Emerging Infections Network. Mycobacterial and other serious infections in patients receiving anti-tumor necrosis factor and other newly approved biologic therapies: case finding through the emerging infections network. Clin. Infect. Dis. 46, 1738–1740 (2008).

    Article  Google Scholar 

  52. Winthrop, K. L., Chang, E., Yamashita, S., Iademarco, M. F. & LoBue, P. A. Nontuberculous mycobacteria infections and anti-tumor necrosis factor-α therapy. Emerg. Infect. Dis. 15, 1556–1561 (2009).

    Article  CAS  Google Scholar 

  53. Maglione, P. J., Xu, J. & Chan, J. B cells moderate inflammatory progression and enhance bacterial containment upon pulmonary challenge with mycobacterium tuberculosis. J. Immunol. 178, 7222–7234 (2007).

    Article  CAS  Google Scholar 

  54. Chakravarty, S. D. et al. Tumor necrosis factor blockade in chronic murine tuberculosis enhances granulomatous inflammation and disorganizes granulomas in the lungs. Infect. Immun. 76, 916–926 (2008).

    Article  CAS  Google Scholar 

  55. Cohen, S. B. et al. Rituximab for rheumatoid arthritis refractory to anti-tumor necrosis factor therapy: Results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at twenty-four weeks. Arthritis Rheum. 54, 2793–2806 (2006).

    Article  CAS  Google Scholar 

  56. Lutt, J. R., Pisculli, M. L., Weinblatt, M. E., Deodhar, A. & Winthrop, K. L. Severe nontuberculous mycobacterial infection in 2 patients receiving rituximab for refractory myositis. J. Rheumatol. 35, 1683–1685 (2008).

    PubMed  Google Scholar 

  57. Schiff, M. H. et al. Integrated safety in tocilizumab clinical trials. Arthritis Res. Ther. 13, R141 (2011).

    Article  CAS  Google Scholar 

  58. Koike, T. et al. Postmarketing surveillance of tocilizumab for rheumatoid arthritis in Japan: Interim analysis of 3881 patients. Ann. Rheum. Dis. 70, 2148–2151 (2011).

    Article  CAS  Google Scholar 

  59. Ogata, A. et al. Minimal influence of tocilizumab on IFN-γ synthesis by tuberculosis antigens. Mod. Rheumatol. 20, 130–133 (2010).

    Article  CAS  Google Scholar 

  60. Okada, M. et al. Anti-IL-6 receptor antibody causes less promotion of tuberculosis infection than anti-TNF-α antibody in mice. Clin. Dev. Immunol. 2011, 404929 (2011).

    PubMed  PubMed Central  Google Scholar 

  61. Simon, T. A. et al. Infections requiring hospitalization in the abatacept clinical development program: an epidemiological assessment. Arthritis Res. Ther. 12, R67 (2010).

    Article  Google Scholar 

  62. Schiff, M. et al. Efficacy and safety of abatacept or infliximab vs placebo in ATTEST: A phase III, multi-centre, randomised, double-blind, placebo-controlled study in patients with rheumatoid arthritis and an inadequate response to methotrexate. Ann. Rheum. Dis. 67, 1096–1103 (2008).

    Article  CAS  Google Scholar 

  63. Bigbee, C. L. et al. Abatacept treatment does not exacerbate chronic mycobacterium tuberculosis infection in mice. Arthritis Rheum. 56, 2557–2565 (2007).

    Article  CAS  Google Scholar 

  64. Maeshima, K. et al. The JAK inhibitor tofacitinib regulates synovitis through inhibition of interferon-γ and interleukin-17 production by human CD4+ T cells. Arthritis Rheum. 64, 1790–1798 (2012).

    Article  CAS  Google Scholar 

  65. Winthrop, K. L. et al. Tuberculosis and tofacinitib therapy in patients with rheumatoid arthritis [abstract 1278]. Arthritis Rheum. 64 (Suppl. 10), S547 (2012).

    Google Scholar 

  66. Singh, J. A. et al. 2012 update of the 2008 American College of Rheumatology recommendations for the use of disease-modifying antirheumatic drugs and biologic agents in the treatment of rheumatoid arthritis. Arthritis Care Res. (Hoboken) 64, 625–639 (2012).

    Article  CAS  Google Scholar 

  67. Winthrop, K. L., Siegel, J. N., Jereb, J., Taylor, Z. & Iademarco, M. F. Tuberculosis associated with therapy against tumor necrosis factor α. Arthritis Rheum. 52, 2968–2974 (2005).

    Article  CAS  Google Scholar 

  68. Beglinger, C. et al. Screening for tuberculosis infection before the initiation of an anti-TNF-α therapy. Swiss Med. Wkly 137, 620–622 (2007).

    PubMed  Google Scholar 

  69. Gomez-Reino, J. J., Carmona L & Angel Descalzo, M., Biobadaser Group. Risk of tuberculosis in patients treated with tumor necrosis factor antagonists due to incomplete prevention of reactivation of latent infection. Arthritis Rheum. 57, 756–761 (2007).

    Article  CAS  Google Scholar 

  70. Solovic, I. et al. The risk of tuberculosis related to tumour necrosis factor antagonist therapies: A TBNET consensus statement. Eur. Respir. J. 36, 1185–1206 (2010).

    Article  CAS  Google Scholar 

  71. Kleinert, S. et al. Screening for latent tuberculosis infection: Performance of tuberculin skin test and interferon-γ release assays under real-life conditions. Ann. Rheum. Dis. 71, 1791–1795 (2012).

    Article  CAS  Google Scholar 

  72. Mariette, X. et al. Influence of replacing tuberculin skin test with ex vivo interferon γ release assays on decision to administer prophylactic antituberculosis antibiotics before anti-TNF therapy. Ann. Rheum. Dis. 71, 1783–1790 (2012).

    Article  CAS  Google Scholar 

  73. Hsia, E. C. et al. Interferon-γ release assay versus tuberculin skin test prior to treatment with golimumab, a human anti-tumor necrosis factor antibody, in patients with rheumatoid arthritis, psoriatic arthritis, or ankylosing spondylitis. Arthritis Rheum. 64, 2068–2077 (2012).

    Article  CAS  Google Scholar 

  74. Mazurek, G. H. et al. Updated guidelines for using interferon gamma release assays to detect mycobacterium tuberculosis infection—United States. MMWR Recomm. Rep. 59, 1–25 (2010).

    PubMed  Google Scholar 

  75. Winthrop, K. L., Weinblatt, M. E. & Daley, C. L. You can't always get what you want, but if you try sometimes (with two tests--TST and IGRA--for tuberculosis) you get what you need. Ann. Rheum. Dis. 71, 1757–1760 (2012).

    Article  Google Scholar 

  76. Lalvani, A. & Millington, K. A. Screening for tuberculosis infection prior to initiation of anti-TNF therapy. Autoimmun. Rev. 8, 147–152 (2008).

    Article  CAS  Google Scholar 

  77. Canadian Tuberculosis Committee (CTC). Recommendations on interferon γ release assays for the diagnosis of latent tuberculosis infection—2010 update. Public Health Agency of Canada [online], (2010).

  78. Wallis, R. S., van Vuuren, C. & Potgieter, S. Adalimumab treatment of life-threatening tuberculosis. Clin. Infect. Dis. 48, 1429–1432 (2009).

    Article  Google Scholar 

  79. Wallis, R. S. et al. A study of the safety, immunology, virology, and microbiology of adjunctive etanercept in HIV-1-associated tuberculosis. AIDS. 18, 257–264 (2004).

    Article  CAS  Google Scholar 

  80. Winthrop, K. L. Serious infections with antirheumatic therapy: are biologicals worse? Ann. Rheum. Dis. 65 (Suppl. 3), iii54–iii57 (2006).

    PubMed  PubMed Central  Google Scholar 

  81. Mori, S. et al. Radiological features and therapeutic responses of pulmonary nontuberculous mycobacterial disease in rheumatoid arthritis patients receiving biological agents: A retrospective multicenter study in Japan. Mod. Rheumatol. 22, 727–737 (2012).

    Article  CAS  Google Scholar 

  82. Koh, W. J. et al. NRAMP1 gene polymorphism and susceptibility to nontuberculous mycobacterial lung diseases. Chest 128, 94–101 (2005).

    Article  CAS  Google Scholar 

  83. Kwon, Y. S. et al. Decreased cytokine production in patients with nontuberculous mycobacterial lung disease. Lung 185, 337–341 (2007).

    Article  CAS  Google Scholar 

  84. Greinert, U., Schlaak, M., Rusch-Gerdes, S., Flad, H. D. & Ernst, M. Low in vitro production of interferon-γ and tumor necrosis factor-α in HIV-seronegative patients with pulmonary disease caused by nontuberculous mycobacteria. J. Clin. Immunol. 20, 445–452 (2000).

    Article  CAS  Google Scholar 

  85. Chen, D. Y. et al. Biphasic emergence of active tuberculosis in rheumatoid arthritis patients receiving TNFα inhibitors: The utility of IFNγ assay. Ann. Rheum. Dis. 71, 231–237 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Jennifer Ku for assistance with preparation and formatting of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

K. L. Winthrop wrote the article. Both authors made substantial contributions to researching data for the article, discussions of content and review and/or editing of the article before submission.

Corresponding author

Correspondence to Kevin L. Winthrop.

Ethics declarations

Competing interests

K. L. Winthrop declares that he has received research grant support from and acted as a consultant for Pfizer, and has acted as a consultant for Abbott, Cellestis, Oxford Immunotech, Roche and UCB. M. Iseman declares that he has acted as a consultant for Oxford Immunotech.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winthrop, K., Iseman, M. Bedfellows: mycobacteria and rheumatoid arthritis in the era of biologic therapy. Nat Rev Rheumatol 9, 524–531 (2013). https://doi.org/10.1038/nrrheum.2013.82

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2013.82

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing