Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Targeted therapies for systemic sclerosis

Abstract

Pathogenic processes that underlie the development and progression of systemic sclerosis (SSc) are being defined in preclinical, clinical and genetic studies. Important evidence of interplay between the vasculature, connective tissue and specialized epithelial structures is emerging, and abnormalities of both the innate and adaptive immune systems have been identified. In this context, information regarding pivotal mediators, pathways or cell types that could be targets for therapeutic intervention, and that might offer potential for true disease modification, is accruing. Precedent for the regression of some aspects of the pathology has been set in clinical studies showing that potential exists to improve tissue structure and function as well as to prevent disease progression. This article reviews the concept of targeted therapies and considers potential pathways and processes that might be attenuated by therapeutic intervention in SSc. As well as improving outcomes, such approaches will undoubtedly provide information about pathogenesis. The concept of translational medicine is especially relevant in SSc, and we anticipate that the elusive goal of an effective antifibrotic treatment will emerge from one of the several clinical trials currently underway or planned in this disease. Therapeutic advances in SSc would have implications and potential beyond autoimmune rheumatic diseases.

Key Points

  • Therapeutic goals in systemic sclerosis (SSc) include minimization of damage from early inflammation and autoimmunity, restoration of vascular homeostasis, promotion of repair of structural connective tissue and resolution of scarring

  • Cardinal pathogenic processes in SSc—autoimmunity, vascular dysfunction and extracellular matrix overproduction—are interdependent; therapeutic targeting of any of them individually is likely to be of broader benefit

  • Current treatments for SSc, such as broad-spectrum immunosuppression, are adopted from the management of other rheumatic diseases; biologic agents and intracellular signalling inhibitors might also be translated into SSc

  • Increasing understanding of the pathobiology of SSc has identified other relevant biological processes and their signalling pathways, such as stem cell biology and epithelial regeneration, as potential targets for therapy

  • New candidate therapies and advances in clinical trial methodology have made targeted therapy a realistic goal that can be tested robustly, underpinning future progress in SSc management

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeting pathogenic processes in SSc.
Figure 2: Targeting multiple pathways of fibroblast activation in SSc.

References

  1. Shand, L. et al. Relationship between change in skin score and disease outcome in diffuse cutaneous systemic sclerosis: application of a latent linear trajectory model. Arthritis Rheum. 56, 2422–2431 (2007).

    Article  PubMed  Google Scholar 

  2. Nihtyanova, S. I. et al. Improved survival in systemic sclerosis is associated with better ascertainment of internal organ disease: a retrospective cohort study. QJM 103, 109–115 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Beyer, C., Schett, G., Distler, O. & Distler, J. H. Animal models of systemic sclerosis: prospects and limitations. Arthritis Rheum. 62, 2831–2844 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Pakozdi, A. et al. Clinical and serological hallmarks of systemic sclerosis overlap syndromes. J. Rheumatol. 38, 2406–2409 (2011).

    Article  PubMed  Google Scholar 

  5. Koumakis, E. et al. Familial autoimmunity in systemic sclerosis—results of a French-based case–control family study. J. Rheumatol. 39, 532–538 (2012).

    Article  PubMed  Google Scholar 

  6. Tyndall, A. J. et al. Causes and risk factors for death in systemic sclerosis: a study from the EULAR Scleroderma Trials and Research (EUSTAR) database. Ann. Rheum. Dis. 69, 1809–1815 (2010).

    Article  PubMed  Google Scholar 

  7. Bhattacharyya, S., Wei, J. & Varga, J. Understanding fibrosis in systemic sclerosis: shifting paradigms, emerging opportunities. Nat. Rev. Rheumatol. 8, 42–54 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brooks, W. H. et al. Epigenetics and autoimmunity. J. Autoimmun. 34, 207–219 (2010).

    Article  CAS  Google Scholar 

  9. Hedrich, C. M. & Rauen, T. Epigenetic patterns in systemic sclerosis and their contribution to attenuated CD70 signaling cascades. Clin. Immunol. 143, 1–3 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Martín, J. E., Bossini-Castillo, L. & Martín, J. Unraveling the genetic component of systemic sclerosis. Hum. Genet. 131, 1023–1037 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Leask, A. Possible strategies for anti-fibrotic drug intervention in scleroderma. J. Cell. Commun. Signal. 5, 125–129 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nihtyanova, S. I. & Denton, C. P. Autoantibodies as predictive tools in systemic sclerosis. Nat. Rev. Rheumatol. 6, 112–116 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Riemekasten, G. et al. Involvement of functional autoantibodies against vascular receptors in systemic sclerosis. Ann. Rheum. Dis. 70, 530–536 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Chung, L. et al. Clinical trial design in scleroderma: where are we and where do we go next? Clin. Exp. Rheumatol. 30 (Suppl. 71), S97–S102 (2012).

    PubMed  Google Scholar 

  15. Elhai, M. et al. Outcomes of patients with systemic sclerosis-associated polyarthritis and myopathy treated with tocilizumab or abatacept: a EUSTAR observational study. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2012-202657

  16. Burt, R. K. et al. Autologous non-myeloablative haemopoietic stem-cell transplantation compared with pulse cyclophosphamide once per month for systemic sclerosis (ASSIST): an open-label, randomised phase 2 trial. Lancet 378, 498–506 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Tyndall, A. Stem cells: HSCT for systemic sclerosis--swallows and summers. Nat. Rev. Rheumatol. 7, 624–626 (2011).

    Article  PubMed  Google Scholar 

  18. van Laar, J. M. et al. The ASTIS trial: autologous stem cell transplantation versus IV pulse cyclophosphamide in poor prognosis systemic sclerosis. First results [abstract LB0002]. Ann. Rheum. Dis. 71 (Suppl. 3), 151 (2012).

    Google Scholar 

  19. Fleming, J. N. et al. Capillary regeneration in scleroderma: stem cell therapy reverses phenotype? PLoS ONE 3, e1452 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moinzadeh, P., Khan, K., Ong, V. H. & Denton, C. P. Sustained improvement of diffuse systemic sclerosis following human cytomegalovirus infection offers insight into pathogenesis and therapy. Rheumatology (Oxford) 51, 2296–2298 (2012).

    Article  Google Scholar 

  21. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  22. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  23. Weingartner, S. et al. Pomalidomide is effective for prevention and treatment of experimental skin fibrosis. Ann. Rheum. Dis. 71, 1895–1899 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Khanna, D. et al. Correlation of the degree of dyspnea with health-related quality of life, functional abilities, and diffusing capacity for carbon monoxide in patients with systemic sclerosis and active alveolitis: results from the Scleroderma Lung Study. Arthritis Rheum. 52, 592–600 (2005).

    Article  PubMed  Google Scholar 

  25. US National Library of Medicine. ClinicalTrials.gov [online], (2010).

  26. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  27. Farina, G., Lafyatis, D., Lemaire, R. & Lafyatis, R. A four-gene biomarker predicts skin disease in patients with diffuse cutaneous systemic sclerosis. Arthritis Rheum. 62, 580–588 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Khan, K. et al. Clinical and pathological significance of interleukin-6 overexpression in systemic sclerosis. Ann. Rheum. Dis. 71, 1235–1242 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  30. US National Library of Medicine. ClinicalTrials.gov [online], (2010).

  31. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  32. Penn, H. et al. Scleroderma renal crisis: patient characteristics and long-term outcomes. QJM 100, 485–494 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Matucci-Cerinic, M. et al. Bosentan treatment of digital ulcers related to systemic sclerosis: results from the RAPIDS-2 randomised, double-blind, placebo-controlled trial. Ann. Rheum. Dis. 70, 32–38 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Taniguchi, T. et al. Effects of bosentan on nondigital ulcers in patients with systemic sclerosis. Br. J. Dermatol. 166, 417–421 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Dhaun, N. et al. Selective endothelin-A receptor antagonism reduces proteinuria, blood pressure, and arterial stiffness in chronic proteinuric kidney disease. Hypertension 57, 772–779 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Valerio, C. J. et al. Clinical experience with bosentan and sitaxentan in connective tissue disease-associated pulmonary arterial hypertension. Rheumatology (Oxford) 49, 2147–2153 (2010).

    Article  CAS  Google Scholar 

  37. Kuhn, A. et al. Effect of bosentan on skin fibrosis in patients with systemic sclerosis: a prospective, open-label, non-comparative trial. Rheumatology (Oxford) 49 1336–1345 (2010).

    Article  CAS  Google Scholar 

  38. Giordano, N. et al. Bosentan treatment for Raynauds phenomenon and skin fibrosis in patients with systemic sclerosis and pulmonary arterial hypertension: an open-label, observational, retrospective study. Int. J. Immunopathol. Pharmacol. 23, 1185–1194 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Furuya, Y., Kuwana, M. Effect of Bosentan on systemic sclerosis-associated interstitial lung disease ineligible for cyclophosphamide therapy: a prospective open-label study. J. Rheum. 38, 2186–2192 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Seibold, J. R. et al. Randomized, prospective, placebo-controlled trial of bosentan in interstitial lung disease secondary to systemic sclerosis. Arthritis Rheum. 62, 2101–2108 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  42. Dees, C. et al. Platelet-derived serotonin links vascular disease and tissue fibrosis. J. Exp. Med. 208, 961–972 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kekewska, A., Görnemann, T., Jantschak, F., Glusa, E. & Pertz, H. H. Antiserotonergic properties of terguride in blood vessels, platelets, and valvular interstitial cells. J. Pharmacol. Exp. Ther. 340, 369–376 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Königshoff, M. et al. Increased expression of 5-hydroxytryptamine2A/B receptors in idiopathic pulmonary fibrosis: a rationale for therapeutic intervention. Thorax 65, 949–955 (2010).

    Article  PubMed  Google Scholar 

  45. Coleiro, B. et al. Treatment of Raynaud's phenomenon with the selective serotonin reuptake inhibit fluoxetine. Rheumatology (Oxford) 40, 1038–1043 (2001).

    Article  CAS  Google Scholar 

  46. Rabinovitch, M. Molecular pathogenesis of pulmonary arterial hypertension. J. Clin. Invest. 122, 4306–4313 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Feoktistov, I., Biaggioni, I. & Cronstein, B. N. Adenosine receptors in wound healing, fibrosis and angiogenesis. Handb. Exp. Pharmacol. 193, 383–397 (2009).

    Article  CAS  Google Scholar 

  48. Perez-Aso, M., Chiriboga, L., Cronstein, B. N. Pharmacological blockade of adenosine A2A receptors diminishes scarring. FASEB J. 26, 4254–4263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Katebi, M., Fernandez, P., Chan, E. S. & Cronstein, B. N. Adenosine A2A receptor blockade or deletion diminishes fibrocyte accumulation in the skin in a murine model of scleroderma, bleomycin-induced fibrosis. Inflammation 31, 299–303 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Herrick, A. L. et al. Modified-release sildenafil reduces Raynaud's phenomenon attack frequency in limited cutaneous systemic sclerosis. Arthritis Rheum. 63, 775–782 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Udalov, S. et al. Effects of phosphodiesterase 4 inhibition on bleomycin-induced pulmonary fibrosis in mice. Pulm. Med. 10, 1–9 (2010).

    Article  CAS  Google Scholar 

  52. Cortijo, J. et al. Roflumilast, a phosphodiesterase 4 inhibitor, alleviates bleomycin-induced lung injury. Br. J. Pharmacol. 156, 534–544 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zisman, D. A. et al. A controlled trial of sildenafil in advanced idiopathic pulmonary fibrosis. N. Engl. J. Med. 363, 620–628 (2010).

    Article  PubMed  Google Scholar 

  54. Rajkumar, V. S. et al. Platelet-derived growth factor-β receptor activation is essential for fibroblast and pericyte recruitment during cutaneous wound healing. Am. J. Pathol. 169, 2254–2265 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Baroni, S. S. et al. Stimulatory autoantibodies to the PDGF receptor in systemic sclerosis. N. Engl. J. Med. 354, 2667–2676 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Classen, J. F. et al. Lack of evidence of stimulatory autoantibodies to platelet-derived growth factor receptor in patients with systemic sclerosis. Arthritis Rheum. 60, 1137–1144 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Yin, Z. et al. Lysophosphatidic acid-activated C1-current activity in human systemic sclerosis skin fibroblasts. Rheumatology (Oxford) 49, 2290–2297 (2010).

    Article  CAS  Google Scholar 

  58. Pradere, J. P. et al. LPA1 receptor activation promotes renal interstitial fibrosis. J. Am. Soc. Nephrol. 18, 3110–3118 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Castelino, F. V. et al. Amelioration of dermal fibrosis by genetic deletion or pharmacologic antagonism of lysophosphatidic acid receptor 1 in a mouse model of scleroderma. Arthritis Rheum. 63, 1405–1415 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Swaney, J. S. et al. A novel, orally active LPA(1) receptor antagonist inhibits lung fibrosis in the mouse bleomycin model. Br. J. Pharmacol. 160, 1699–1713 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kronke, G. et al. The 12/15-lipoxygenase pathway counteracts fibroblast activation and experimental fibrosis. Ann. Rheum. Dis. 71, 1081–1087 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Ewert, R. et al. Continuous intravenous iloprost to revert treatment failure of first-line inhaled iloprost in patients with idiopathic pulmonary arterial hypertension. Clin. Res. Cardiol. 96, 211–217 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Stratton, R. et al. Iloprost suppresses connective growth factor production in fibroblasts and in the skin of scleroderma patients. J. Clin. Invest. 108, 241–250 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wilborn, J. et al. Constitutive activation of 5-lipooxygenase in the lungs of patients with idiopathic pulmonary fibrosis. J. Clin. Invest. 97, 1827–1836 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Izumo, T. et al. Cysteinyl-leukotriene 1 receptor antagonist attenuates bleomycin-induced pulmonary fibrosis in mice. Life Sci. 80, 1882–1886 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Balistreri, E. et al. The cannabinoid WIN55, 212–2 abrogates dermal fibrosis in scleroderma bleomycin model. Ann. Rheum. Dis. 70, 695–699 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Marquart, S. et al. Inactivation of the cannabinoid receptor CB1 prevents leukocyte infiltration and experimental fibrosis. Arthritis Rheum. 62, 3467–3476 (2010).

    Article  PubMed  Google Scholar 

  68. Gonzalez, E. G. et al. Synthetic cannabinoid ajulemic acid exerts potent antifibrotic effects in experimental models of systemic sclerosis. Ann. Rheum. Dis. 71, 1545–1551 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Du, H., Chen, X., Zhang, J. & Chen, C. Inhibition of COX-2 expression by endocannabinoid-2-arachidonoylglycerol is mediated via PPAR-γ. Br. J. Pharmacol. 163, 1533–1549 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Genovese, T. et al. Effect of rosiglitazone and 15-deoxy-δ12, 14-prostaglandin J2 on bleomycin-induced lung injury. Eur. Respir. J. 25, 225–234 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Kapoor, M. et al. Loss of peroxisome proliferator-activated receptor γ in mouse fibroblasts results in increased susceptibility to bleomycin-induced skin fibrosis. Arthritis Rheum. 60, 2822–2829 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Samah, M., El-Aidy Ael, R., Tawfik, M. K. & Ewais, M. M. Evaluation of the antifibrotic effect of fenofibrate and rosiglitazone on bleomycin-induced pulmonary fibrosis in rats. Eur. J. Pharmacol. 689, 186–193 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Distler, J. H. et al. Monocyte chemoattractant proteins in the pathogenesis of systemic sclerosis. Rheumatology (Oxford) 48, 98–103 (2009).

    Article  CAS  Google Scholar 

  74. Gharaee-Kermani, M., McCullumsmith, R. E., Charo, I. F., Kunkel, S. L. & Phan, S. H. CC-chemokine receptor 2 required for bleomycin-induced pulmonary fibrosis. Cytokine 24, 266–276 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Gu, L. et al. Control of TH2 polarization by he chemokine monocyte chemoattractant protein-1. Nature 404, 407–411 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Carulli, M. T. et al. Chemokine receptor CCR2 expression by systemic sclerosis fibroblasts: evidence for autocrine regulation of myofibroblast differentiation. Arthritis Rheum. 52, 3772–3782 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Greenblatt, M. B. et al. Interspecies comparison of human and murine scleroderma reveals IL-13 and CCL2 as disease subset-specific targets. Am. J. Pathol. 180, 1080–1094 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tiev, K. P. et al. Serum CC chemokine ligand-18 predicts lung disease worsening in systemic sclerosis. Eur. Respir. J. 38, 1355–1360 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Reshef, R. et al. Blockade of lymphocyte chemotaxis in visceral graft-versus-host disease. N. Engl. J. Med. 367, 135–145 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fleishaker, D. L. et al. Maraviroc, a chemokine receptor-5 antagonist, fails to demonstrate efficacy in the treatment of patients with rheumatoid arthritis in a randomized, double-blind placebo-controlled trial. Arthritis Res. Ther. 14, R11 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Aliprantis, A. O. et al. Transcription factor T-bet regulates skin sclerosis through its function in innate immunity and via IL-13. Proc. Natl Acad. Sci. USA 104, 2827–2830 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Fichtner-Feigl, S., Strober, W., Kawakami, K., Puri, R. K. & Kitani, A. IL-13 signaling through the IL-13α2 receptor is involved in induction of TGF-β1 production and fibrosis. Nat. Med. 12, 99–106 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Kraft, M. Asthma phenotypes and interleukin-13-moving closer to personalized medicine. N. Engl. J. Med. 365, 1141–1144 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yang, L. et al. Periostin facilitates skin sclerosis via PI3K/Akt dependent mechanism in a mouse model of scleroderma. PLoS ONE 7, e41994 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. US National Library of Medicine ClinicalTrials.gov [online], (2013).

  86. Valente, A. J. et al. Interleukin-17A stimulates cardiac fibroblast proliferation and migration via negative regulation of the dual-specificity phosphatase MKP-1/DUSP-1. Cell Signal. 24, 560–568 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Nakashima, T. et al. Impaired IL-17 signaling pathway contributes to the increased collagen expression in scleroderma fibroblasts. J. Immunol. 188, 3573–3583 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Kurasawa, K. et al. Increased interleukin-17 production in patients with systemic sclerosis. Arthritis Rheum. 43, 2455–2463 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Meng, F. et al. Interleukin-17 signalling in inflammatory, kupffer cells and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology 143, 765–776 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mi, S. et al. Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-β1-dependent and –independent mechanisms. J. Immunol. 187, 3003–3014 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  92. Piguet, P. F. et al. Tumor necrosis factor/cachectin plays a key role in bleomycin-induced pneumopathy and fibrosis. J. Exp. Med. 170, 655–663 (1989).

    Article  CAS  PubMed  Google Scholar 

  93. Denton, C. P. et al. An open-label pilot study of infliximab therapy in diffuse cutaneous systemic sclerosis. Ann. Rheum. Dis. 68, 1433–1439 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Distler, J. H. et al. Is there a role for TNFα antagonists in the treatment of SSc? EUSTAR expert consensus development using the Delphi technique. Clin. Exp. Rheumatol. 29 (Suppl. 65), S40–S45 (2011).

    PubMed  Google Scholar 

  95. Kawaguchi, Y., McCarthy, S. A., Watkins, S. C. & Wright, T. M. Autocrine activation by interleukin 1α induces the fibrogenic phenotype of systemic sclerosis fibroblasts. J. Rheumatol. 31, 1946–1954 (2004).

    CAS  PubMed  Google Scholar 

  96. Aden, N. et al. Epithelial cells promote fibroblast activation via IL-1α in systemic sclerosis. J. Invest. Dermatol. 130, 2191–2200 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Bonniaud, P. et al. TGF-β and Smad3 signaling link inflammatrion to chronic fibrogenesis. J. Immunol. 175, 5390–5395 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Shima, Y. et al. The skin of patients with systemic sclerosis softened during the treatment with anti-IL-6 receptor antibody tocilizumab. Rheumatology (Oxford) 49, 2408–2412 (2010).

    Article  CAS  Google Scholar 

  99. Honda, N. et al. TGF-β mediated downregulation of microRNA-196a contributes to the constitutive upregulated type I collagen expression in scleroderma dermal fibroblasts. J. Immunol. 188, 3323–3331 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Hemmatazad, H. et al. Histone deacetylase 7, a potential target for the antifibrotic treatment of systemic sclerosis. Arthritis Rheum. 60, 1519–1529 (2009).

    Article  PubMed  Google Scholar 

  101. Akgedik, R. et al. Effect of resveratrol on treatment of bleomycin-induced pulmonary fibrosis in rats. Inflammation 35, 1732–1741 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Li, J., Qu, X., Ricardo, S. D., Bertram, J. F. & Nikolic-Paterson, D. J. Resveratrol inhibits renal fibrosis in the obstructed kidney: potential role in deacetylation of Smad3. Am. J. Pathol. 177, 1065–1071 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Horn, A. et al. Inhibition of hedgehog signalling prevents experimental fibrosis and induces regression of established fibrosis. Ann. Rheum. Dis. 71, 785–789 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Aoyagi-Ikeda, K. et al. Notch induces myofibroblast differentiation of alveolar epithelial cells via transforming growth factor-β-Smad3 pathway. Am. J. Respir. Cell. Mol. Biol. 45, 136–144 (2011).

    CAS  PubMed  Google Scholar 

  105. Kavian, N. et al. Targeting ADAM-17/notch signaling abrogates the development of systemic sclerosis in a murine model. Arthritis Rheum. 62, 3477–3487 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Djudjaj, S. et al. Notch-3 receptor activation drives inflammation and fibrosis following tubulointerstitial kidney injury. J. Pathol. 228, 286–299 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Akhmetshina, A. et al. Activation of canonical Wnt signalling is required for TGF-β mediated fibrosis. Nat. Commun. 3, 735 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Dees, C., Zerr. et al. Inhibition of Notch signaling prevents experimental fibrosis and induces regression of established fibrosis. Arthritis Rheum. 63, 1396–1404 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tang, J. Y. et al. Inhibiting the hedgehog pathway in patients with the basal-cell nevus syndrome. N. Engl. J. Med. 366, 2180–2188 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ihn, H. et al. Blockade of endogenous transforming growth factor β signaling prevents upregulated collagen synthesis in scleroderma fibroblasts: association with increased expression of transforming growth factor β receptors. Arthritis Rheum. 44, 474–480 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Sargent, J. L. et al. A TGF β-responsive gene signature is associated with a subset of diffuse scleroderma with increased disease severity. J. Invest. Dermatol. 130, 694–705 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Avouac, J. et al. Inhibition of activator protein 1 signaling abrogates transforming growth factor β-mediated activation of fibroblasts and prevents experimental fibrosis. Arthritis Rheum. 64, 1642–1652 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Dees, C. et al. JAK-2 as a novel mediator of the profibrotic effects of transforming growth factor β in systemic sclerosis. Arthritis Rheum. 64, 3006–3015 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Denton, C. P. et al. Cat-192 Study Group, Scleroderma Clinical Trials Consortium. Recombinant human anti-transforming growth factor beta1 antibody therapy in systemic sclerosis: a multicenter, randomized, placebo-controlled phase I/II trial of CAT-192. Arthritis Rheum. 56, 323–333 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  116. Riser, B. L. et al. CCN3 (Nov) is a negative regulator of CCN2(CTGF) and a novel endogenous inhibitor of the fibrotic pathway in an in vitro model of renal disease. Am. J. Pathol. 174, 1725–1734 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Adler, S. G. et al. Phase I study of anti-CTGF monoclonal antibody in patients with diabetes and microalbuminuria. Clin. J. Am. Soc. Nephrol. 5, 1420–1428 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Asano, Y., Ihn, H., Yamane, K., Jinnin, M. & Tamaki, K : Increased expression of integrin αvβ5 induces the myofibroblastic differentiation of dermal fibroblasts. Am. J. Pathol. 168, 499–510 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Katsumoto, T. R., Violette, S. M. & Sheppard, D. Blocking TGFβ via inhibition of the αvβ6 integrin: a possible therapy for systemic sclerosis interstitial lung disease. Int. J. Rheumatol. 208219 (2011).

  120. Horan, G. S. et al. Partial inhibition of integrin αvβ6 prevents pulmonary fibrosis without exacerbating inflammation. Am. J. Respir. Crit. Care Med. 177, 56–65 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Puthawala, K. et al. Inhibition of integrin αvβ6, an activator of latent transforming growth factor-β, prevents radiation-induced lung fibrosis. Am. J. Respir. Crit. Care Med. 177, 82–90 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Goodman, S. L., Picard, M. Integrins as therapeutic targets. Trends Pharmacol. Sci. 33, 405–412 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Akhmetshina, A. et al. Treatment with imatinib prevents fibrosis in different preclinical models of systemic sclerosis and induces regression of established fibrosis. Arthritis Rheum. 60, 219–224 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Spiera, R. F. et al. Imatinib mesylate (Gleevec) in the treatment of diffuse cutaneous systemic sclerosis: results of a 1-year, phase IIa, single-arm, open-label clinical trial. Ann. Rheum. Dis. 70, 1003–1009 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Pope, J. et al. Imatinib in active diffuse cutaneous systemic sclerosis: Results of a six-month, randomized, double-blind, placebo-controlled, proof-of-concept pilot study at a single center. Arthritis Rheum. 63, 3547–3551 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  127. Gordon, J. K. et al. Nilotinib (Tasigna™) in the treatment of early diffuse systemic sclerosis: a single group, open-label pilot clinical trial [abstract 694]. Arthritis Rheum. 64 (Suppl. 10), S298 (2012).

    Google Scholar 

  128. Ghofrani, H. A. et al. Imatinib in pulmonary arterial hypertension patients with inadequate response to established therapy. Am. J. Respir. Crit. Care Med. 182, 1171–1177 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Richeldi, L. et al. Efficacy of a tyrosine kinase inhibitor in idiopathic pulmonary fibrosis. N. Engl. J. Med. 365, 1079–1087 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  131. Keir, G. J. et al. Severe interstitial lung disease in connective tissue disease: rituximab as rescue therapy. Eur. Respir. J. 40, 641–648 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Murray, L. A. et al. TGF-β driven lung fibrosis is macrophage-dependent and blocked by Serum amyloid P. Int. J. Biochem. Cell. Biol. 43, 154–162 (2011).

    Article  CAS  PubMed  Google Scholar 

  133. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  134. Denton, C. P. et al. Comparative analysis of change in modified Rodnan skin score in patients with diffuse systemic sclerosis receiving imatinib mesylate suggests similar disease course to matched patients receiving standard therapy [abstract]. Arthritis Rheum. 62 (Suppl. 10), 566 (2010).

    Google Scholar 

  135. Fonseca, C. et al. A polymorphism in the CTGF promoter region associated with systemic sclerosis. N. Engl. J. Med. 357, 1210–1220 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Granel, B. et al. Association between a CTGF gene polymorphism and systemic sclerosis in a French population. J. Rheum. 37, 351–358 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  138. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  139. US National Library of Medicine. ClinicalTrials.gov [online], (2007).

  140. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  141. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  142. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  143. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  144. Herrick, A. L., Lunt, M., Whidby, N. Observational study of treatment outcome in early diffuse cutaneous systemic sclerosis. J. Rheumatol. 37, 116–124 (2010).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

C. P. Denton selected the content of the article. Both authors made substantial contributions to researching data for the article, writing the article, and review and editing of the article before submission.

Corresponding author

Correspondence to Christopher P. Denton.

Ethics declarations

Competing interests

C. P. Denton declares that he has received consultancy fees, honoraria and research funding from Actelion Pharmaceuticals, and consultancy fees and honoraria from GSK, Pfizer, Novartis, Sanofi-Aventis and Merck-Serono. V. H. Ong declares that he has received consultancy fees and honoraria from Actelion Pharmaceuticals.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denton, C., Ong, V. Targeted therapies for systemic sclerosis. Nat Rev Rheumatol 9, 451–464 (2013). https://doi.org/10.1038/nrrheum.2013.46

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2013.46

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing