Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

A critical role for immature muscle precursors in myositis

Abstract

The innate and adaptive immune responses contribute to the development of inflammatory myopathies; the innate immune system does so through activation of the type I interferon and Toll-like receptor pathways. Dendritic cells have a pivotal role in the development of both adaptive and innate immune responses. Equipped with a range of pattern-recognition receptors, dendritic cells link innate and adaptive immunity. This Perspectives article discusses novel concepts in myositis, focusing on immature muscle precursors. Of interest, the immature muscle precursors involved in regeneration are associated with upregulation of HLA class I antigens and myositis-associated autoantigens, as well as activation of the Toll-like receptor pathway and production of type I interferon, and could have a critical contribution to the pathogenesis of myositis. These regenerating immature muscle cells might also be a target of the immune response in myositis, thereby explaining why muscle regeneration is not effective in the context of such inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immature muscle precursor involvement in autoimmune muscle disorders.

Similar content being viewed by others

References

  1. Sordet, C., Goetz, J. & Sibilia, J. Contribution of autoantibodies to the diagnosis and nosology of inflammatory muscle disease. Joint Bone Spine 73, 646–654 (2006).

    Article  CAS  Google Scholar 

  2. Miller, F. W., Twitty, S. A., Biswas, T. & Plotz, P. H. Origin and regulation of a disease-specific autoantibody response. Antigenic epitopes, spectrotype stability, and isotype restriction of anti-Jo-1 autoantibodies. J. Clin. Invest. 85, 468–475 (1990).

    Article  CAS  Google Scholar 

  3. Stone, K. B. et al. Anti-Jo-1 antibody levels correlate with disease activity in idiopathic inflammatory myopathy. Arthritis Rheum. 56, 3125–3131 (2007).

    Article  CAS  Google Scholar 

  4. Casciola-Rosen, L. et al. Enhanced autoantigen expression in regenerating muscle cells in idiopathic inflammatory myopathy. J. Exp. Med. 201, 591–601 (2005).

    Article  CAS  Google Scholar 

  5. Levine, S. M. et al. Novel conformation of histidyl-transfer RNA synthetase in the lung: the target tissue in Jo-1 autoantibody-associated myositis. Arthritis Rheum. 56, 2729–2739 (2007).

    Article  CAS  Google Scholar 

  6. Howard, O. M. et al. Histidyl-tRNA synthetase and asparaginyl-tRNA synthetase, autoantigens in myositis, activate chemokine receptors on T lymphocytes and immature dendritic cells. J. Exp. Med. 196, 781–791 (2002).

    Article  CAS  Google Scholar 

  7. Eloranta, M. L. et al. A possible mechanism for endogenous activation of the type I interferon system in myositis patients with anti-Jo-1 or anti-Ro 52/anti-Ro 60 autoantibodies. Arthritis Rheum. 56, 3112–3124 (2007).

    Article  CAS  Google Scholar 

  8. Hohlfeld, R. & Engel, A. G. Coculture with autologous myotubes of cytotoxic T cells isolated from muscle in inflammatory myopathies. Ann. Neurol. 29, 498–507 (1991).

    Article  CAS  Google Scholar 

  9. Bender, A. et al. T cell receptor repertoire in polymyositis: clonal expansion of autoaggressive CD8+ T cells. J. Exp. Med. 181, 1863–1868 (1995).

    Article  CAS  Google Scholar 

  10. Benveniste, O. et al. Severe perturbations of the blood T cell repertoire in polymyositis, but not dermatomyositis patients. J. Immunol. 167, 3521–3529 (2001).

    Article  CAS  Google Scholar 

  11. Zong, M. et al. Effects of immunosuppressive treatment on interleukin-15 and interleukin-15 receptor α expression in muscle tissue of patients with polymyositis and dermatomyositis. Ann. Rheum. Dis. 71, 1055–1063 (2012).

    Article  CAS  Google Scholar 

  12. Tournadre, A. et al. TH1 and TH17 balance in inflammatory myopathies: interaction with dendritic cells and possible link with response to high-dose immunoglobulins. Cytokine 46, 297–301 (2009).

    Article  CAS  Google Scholar 

  13. Lundberg, I., Brengman, J. M. & Engel, A. G. Analysis of cytokine expression in muscle in inflammatory myopathies, Duchenne dystrophy, and non-weak controls. J. Neuroimmunol. 63, 9–16 (1995).

    Article  CAS  Google Scholar 

  14. Lepidi, H. et al. Local expression of cytokines in idiopathic inflammatory myopathies. Neuropatho. Appl. Neurobiol. 24, 73–79 (1998).

    Article  CAS  Google Scholar 

  15. Tucci, M., Quatraro, C., Dammacco, F. & Silvestris, F. Interleukin-18 overexpression as a hallmark of the activity of autoimmune inflammatory myopathies. Clin. Exp. Immunol. 146, 21–31 (2006).

    Article  CAS  Google Scholar 

  16. Miossec, P., Korn, T. & Kuchroo, V. K. Interleukin-17 and type 17 helper T cells. N. Engl. J. Med. 361, 888–898 (2009).

    Article  CAS  Google Scholar 

  17. Chevrel, G. et al. Interleukin-17 increases the effects of IL-1β on muscle cells: arguments for the role of T cells in the pathogenesis of myositis. J. Neuroimmunol. 137, 125–133 (2003).

    Article  CAS  Google Scholar 

  18. Page, G., Chevrel, G. & Miossec, P. Anatomic localization of immature and mature dendritic cell subsets in dermatomyositis and polymyositis: interaction with chemokines and TH1 cytokine-producing cells. Arthritis Rheum. 50, 199–208 (2004).

    Article  CAS  Google Scholar 

  19. Tournadre, A. & Miossec P. Cytokine response in inflammatory myopathies. Curr. Rheumatol. Rep. 9, 286–290 (2007).

    Article  CAS  Google Scholar 

  20. Tournadre, A. & Miossec P. Chemokines and dendritic cells in inflammatory myopathies. Ann. Rheum. Dis. 68, 300–304 (2009).

    Article  CAS  Google Scholar 

  21. Chevrel, G., Granet, C. & Miossec, P. Contribution of tumour necrosis factor α and interleukin (IL) 1β to IL6 production, NF-κB nuclear translocation, and class I MHC expression in muscle cells: in vitro regulation with specific cytokine inhibitors. Ann. Rheum. Dis. 64, 1257–1262 (2005).

    Article  CAS  Google Scholar 

  22. Li, Y. & Reid, M. B. Effect of tumor necrosis factor-α on skeletal muscle metabolism. Curr. Opin. Rheumatol. 13, 483–487 (2001).

    Article  CAS  Google Scholar 

  23. Austin, L. & Burgess, A. W. Stimulation of myoblast proliferation in culture by leukaemia inhibitory factor and other cytokines. J. Neurol. Sci. 101, 193–197 (1991).

    Article  CAS  Google Scholar 

  24. Austin, L., Bower, J., Kurek, J. & Vakakis, N. Effects of leukaemia inhibitory factor and other cytokines on murine and human myoblast proliferation. J. Neurol. Sci. 112, 185–191 (1992).

    Article  CAS  Google Scholar 

  25. Dastmalchi, M. et al. A high incidence of disease flares in an open pilot study of infliximab in patients with refractory inflammatory myopathies. Ann. Rheum. Dis. 67, 1670–1677 (2008).

    Article  CAS  Google Scholar 

  26. Walsh, R. J. et al. Type I interferon-inducible gene expression in blood is present and reflects disease activity in dermatomyositis and polymyositis. Arthritis Rheum. 56, 3784–3792 (2007).

    Article  CAS  Google Scholar 

  27. Baechler, E. C. et al. An interferon signature in the peripheral blood of dermatomyositis patients is associated with disease activity. Mol. Med. 13, 59–68 (2007).

    Article  CAS  Google Scholar 

  28. Greenberg, S. A. et al. Interferon-α/β-mediated innate immune mechanisms in dermatomyositis. Ann. Neurol. 57, 664–678 (2005).

    Article  CAS  Google Scholar 

  29. Cappelletti, C. B. F. et al. Type I interferon and Toll-like receptor expression characterizes inflammatory myopathies. Neurology 76, 2079–2088 (2011).

    Article  CAS  Google Scholar 

  30. Tournadre, A., Lenief, V., Eljaafari, A. & Miossec, P. Immature muscle precursors are a source of interferon-β in myositis: role of Toll-like receptor 3 activation and contribution to HLA class I up-regulation. Arthritis Rheum. 64, 533–541 (2012).

    Article  CAS  Google Scholar 

  31. Leadbetter, E. A. et al. Chromatin–IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416, 603–607 (2002).

    Article  CAS  Google Scholar 

  32. Lau, C. M. et al. RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J. Exp. Med. 202, 1171–1177 (2005).

    Article  CAS  Google Scholar 

  33. Tournadre, A., Lenief, V. & Miossec, P. Expression of Toll-like receptor 3 and Toll-like receptor 7 in muscle is characteristic of inflammatory myopathy and is differentially regulated by TH1 and TH17 cytokines. Arthritis Rheum. 62, 2144–2151 (2010).

    CAS  PubMed  Google Scholar 

  34. Schreiner, B. et al. Expression of Toll-like receptors by human muscle cells in vitro and in vivo: TLR3 is highly expressed in inflammatory and HIV myopathies, mediates IL-8 release and up-regulation of NKG2D-ligands. FASEB J. 20, 118–120 (2006).

    Article  CAS  Google Scholar 

  35. Bell, D., Young, J. W. & Banchereau, J. Dendritic cells. Adv. Immunol. J. 72, 255–324 (1999).

    Article  CAS  Google Scholar 

  36. Lopez de Padilla, C. M. et al. Plasmacytoid dendritic cells in inflamed muscle of patients with juvenile dermatomyositis. Arthritis Rheum. 56, 1658–1668 (2007).

    Article  Google Scholar 

  37. Greenberg, S. A., Pinkus, G. S., Amato, A. A. & Pinkus, J. L. Myeloid dendritic cells in inclusion-body myositis and polymyositis. Muscle Nerve 35, 17–23 (2007).

    Article  CAS  Google Scholar 

  38. Emslie-Smith, A. M., Arahata, K. & Engel, A. G. Major histocompatibility complex class I antigen expression, immunolocalization of interferon subtypes, and T cell-mediated cytotoxicity in myopathies. Hum. Pathol. 20, 224–231 (1989).

    Article  CAS  Google Scholar 

  39. Nagaraju, K. et al. Conditional up-regulation of MHC class I in skeletal muscle leads to self-sustaining autoimmune myositis and myositis-specific autoantibodies. Proc. Natl Acad. Sci. USA 97, 9209–9214 (2000).

    Article  CAS  Google Scholar 

  40. Nagaraju, K. et al. Activation of the endoplasmic reticulum stress response in autoimmune myositis: potential role in muscle fiber damage and dysfunction. Arthritis Rheum. 52, 1824–1835 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A. Tournadre and P. Miossec researched data for the article, discussed its content, and wrote the manuscript. P. Miossec also reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Pierre Miossec.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tournadre, A., Miossec, P. A critical role for immature muscle precursors in myositis. Nat Rev Rheumatol 9, 438–442 (2013). https://doi.org/10.1038/nrrheum.2013.26

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2013.26

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing