Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Protective autoantibodies in the rheumatic diseases: lessons for therapy

Abstract

The adaptive immune system augments host defenses against diverse infectious threats, yet also carries intertwined risks for the development of autoimmune disease. The immune system incorporates homeostatic pathways for essential housekeeping functions that involve recognition of oxidation-modified endogenous molecules. Now, the properties of a physiological class of natural autoantibodies, which seem to modulate the severity or even prevent the onset of autoimmune disease, are beginning to be defined. Whereas disease-associated IgG autoantibodies to nuclear antigens and citrulline-modified self-proteins have been shown to activate innate pattern recognition receptors leading to increased cell death and tissue injury, a class of IgM autoantibodies to oxidation-associated neo-antigens can oppose these pathogenic effects. These naturally arising regulatory IgM autoantibodies enhance the capacity for the phagocytic clearance of host cells affected by programmed death pathways. These antibodies can also suppress key signalling pathways in the innate immune system involved in the control and resolution of inflammatory responses to Toll-like receptor agonists and disease-associated IgG autoantibodies.

Key Points

  • Innate immune effects, responsible for recognition and disposal of damaged and apoptotic cells, accomplish intertwined goals of regulation of inflammatory responses and reinforcement of immunologic tolerance

  • Naturally arising IgM antibodies (NAbs) to oxidation-associated neo-epitopes are present from birth; levels can be increased by exposure to apoptotic cells

  • Autoreactive NAbs enhance phagocytic clearance of apoptotic cells and have the capacity to block inflammatory responses induced by Toll-like receptor ligands and autoantibody-containing immune complexes

  • Regulatory properties of NAbs to apoptotic cells are associated with blocked activation of mitogen-activated protein kinases; functional properties are linked to recruitment of early complement factors, C1q and MBL

  • In experimental models, IgM NAbs to apoptotic cells inhibit the development of inflammatory arthritis and atherosclerosis

  • In patients with rheumatic diseases, spontaneously higher levels of NAbs correlate with fewer cardiovascular events

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Galbraith, P. R., Valberg, L. S. & Brown, M. Patterns of granulocyte kinetics in health, infection and in carcinoma. Blood 25, 683–692 (1965).

    CAS  PubMed  Google Scholar 

  2. Botto, M. & Walport, M. J. C1q, autoimmunity and apoptosis. Immunobiology 205, 395–406 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Wickman, G., Julian, L. & Olson, M. F. How apoptotic cells aid in the removal of their own cold dead bodies. Cell Death Differ. 19, 735–742 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Miller, Y. I. et al. Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity. Circ. Res. 108, 235–248 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chang, M. K. et al. Apoptotic cells with oxidation-specific epitopes are immunogenic and proinflammatory. J. Exp. Med. 200, 1359–1370 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fadok, V. A., Bratton, D. L., Frasch, S. C., Warner, M. L. & Henson, P. M. The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ. 5, 551–562 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Morelli, A. E. et al. Internalization of circulating apoptotic cells by splenic marginal zone dendritic cells: dependence on complement receptors and effect on cytokine production. Blood 101, 611–620 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Ip, W. K. & Lau, Y. L. Distinct maturation of, but not migration between, human monocyte-derived dendritic cells upon ingestion of apoptotic cells of early or late phases. J. Immunol. 173, 189–196 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Shaw, P. X., Goodyear, C. S., Chang, M. K., Witztum, J. L. & Silverman, G. J. The autoreactivity of anti-phosphorylcholine antibodies for atherosclerosis-associated neo-antigens and apoptotic cells. J. Immunol. 170, 6151–6157 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Chen, Y., Park, Y. B., Patel, E. & Silverman, G. J. IgM antibodies to apoptosis-associated determinants recruit C1q and enhance dendritic cell phagocytosis of apoptotic cells. J. Immunol. 182, 6031–6043 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen, Y. et al. Regulation of dendritic cells and macrophages by an anti-apoptotic cell natural antibody that suppresses TLR responses and inhibits inflammatory arthritis. J. Immunol. 183, 1346–1359 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Elkon, K. & Casali, P. Nature and functions of autoantibodies. Nat. Clin. Pract. Rheumatol. 4, 491–498 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lleo, A., Invernizzi, P., Gao, B., Podda, M. & Gershwin, M. E. Definition of human autoimmunity-autoantibodies versus autoimmune disease. Autoimmun. Rev. 9, A259–A266 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Marshak-Rothstein, A. & Rifkin, I. R. Immunologically active autoantigens: the role of Toll-like receptors in the development of chronic inflammatory disease. Annu. Rev. Immunol. 25, 419–441 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Ronnblom, L. & Pascual, V. The innate immune system in SLE: type I interferons and dendritic cells. Lupus 17, 394–399 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Calin, A. The epidemiology of rheumatoid disease: past and present. Dis. Markers 4, 1–6 (1986).

    CAS  PubMed  Google Scholar 

  17. Mannik, M. Rheumatoid factors in the pathogenesis of rheumatoid arthritis. J. Rheumatol. Suppl. 32, 46–49 (1992).

    CAS  PubMed  Google Scholar 

  18. Dorner, T., Egerer, K., Feist, E. & Burmester, G. R. Rheumatoid factor revisited. Curr. Opin. Rheumatol. 16, 246–253 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Zvaifler, N. J. The immunopathology of joint inflammation in rheumatoid arthritis. Adv. Immunol. 16, 265–336 (1973).

    Article  CAS  PubMed  Google Scholar 

  20. Wozniczko-Orlowska, G. & Milgrom, F. Collagen–anti-collagen complexes in rheumatoid arthritis sera. Int. Arch. Allergy Appl. Immunol. 68, 28–34 (1982).

    Article  CAS  PubMed  Google Scholar 

  21. Brand, D. D., Kang, A. H. & Rosloniec, E. F. Immunopathogenesis of collagen arthritis. Springer Semin. Immunopathol. 25, 3–18 (2003).

    Article  PubMed  Google Scholar 

  22. Raptopoulou, A., Sidiropoulos, P., Katsouraki, M. & Boumpas, D. T. Anti-citrulline antibodies in the diagnosis and prognosis of rheumatoid arthritis: evolving concepts. Crit. Rev. Clin. Lab. Sci. 44, 339–363 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Klareskog, L., Ronnelid, J., Lundberg, K., Padyukov, L. & Alfredsson, L. Immunity to citrullinated proteins in rheumatoid arthritis. Annu. Rev. Immunol. 26, 651–675 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Wegner, N. et al. Autoimmunity to specific citrullinated proteins gives the first clues to the etiology of rheumatoid arthritis. Immunol. Rev. 233, 34–54 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Ravetch, J. V. & Bolland, S. IgG Fc receptors. Annu. Rev. Immunol. 19, 275–290 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Gui, T., Shimokado, A., Sun, Y., Akasaka, T. & Muragaki, Y. Diverse roles of macrophages in atherosclerosis: from inflammatory biology to biomarker discovery. Mediators Inflamm. 2012, 693083 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Janeway, C. A. J., Goodnow, C. C. & Medzhitov, R. Danger—pathogen on the premises! Immunological tolerance. Curr. Biol. 6, 519–522 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Boule, M. W. et al. Toll-like receptor 9-dependent and -independent dendritic cell activation by chromatin-immunoglobulin G complexes. J. Exp. Med. 199, 1631–1640 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yasuda, K. et al. Murine dendritic cell type I IFN production induced by human IgG-RNA immune complexes is IFN regulatory factor (IRF)5 and IRF7 dependent and is required for IL-6 production. J. Immunol. 178, 6876–6885 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Lovgren, T., Eloranta, M. L., Bave, U., Alm, G. V. & Ronnblom, L. Induction of interferon-α production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG. Arthritis Rheum. 50, 1861–1872 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Leadbetter, E. A. et al. Chromatin–IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416, 603–607 (2002).

    Article  CAS  Google Scholar 

  32. Marshak-Rothstein, A. Toll-like receptors in systemic autoimmune disease. Nat. Rev. Immunol. 6, 823–835 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Lee, J. H. et al. Interleukin 17 (IL-17) increases the expression of Toll-like receptor-2, 4, and 9 by increasing IL-1β and IL-6 production in autoimmune arthritis. J. Rheumatol. 36, 684–692 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Zhao, X. et al. Circulating immune complexes contain citrullinated fibrinogen in rheumatoid arthritis. Arthritis Res. Ther. 10, R94 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kuhn, K. A. et al. Antibodies against citrullinated proteins enhance tissue injury in experimental autoimmune arthritis. J. Clin. Invest. 116, 961–973 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sokolove, J., Zhao, X., Chandra, P. E. & Robinson, W. H. Immune complexes containing citrullinated fibrinogen costimulate macrophages via Toll-like receptor 4 and Fcγ receptor. Arthritis Rheum. 63, 53–62 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Abdollahi-Roodsaz, S. et al. Inhibition of toll-like receptor 4 breaks the inflammatory loop in autoimmune destructive arthritis. Arthritis Rheum. 56, 2957–2967 (2007).

    Article  CAS  Google Scholar 

  38. Lu, M. C. et al. Anti-citrullinated protein antibodies bind surface-expressed citrullinated Grp78 on monocyte/macrophages and stimulate tumor necrosis factor α production. Arthritis Rheum. 62, 1213–1223 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Harre, U. et al. Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J. Clin. Invest. 122, 1791–1802 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ehrenstein, M. R. & Notley, C. A. The importance of natural IgM: scavenger, protector and regulator. Nat. Rev. Immunol. 778–786 (2010).

  41. Ehrenstein, M. R., Cook, H. T. & Neuberger, M. S. Deficiency in serum immunoglobulin (Ig)M predisposes to development of IgG autoantibodies. J. Exp. Med. 191, 1253–1258 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Boes, M. et al. Accelerated development of IgG autoantibodies and autoimmune disease in the absence of secreted IgM. Proc. Natl Acad. Sci. USA 97, 1184–1189 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Kantor, A. B. & Herzenberg, L. A. Origin of murine B cell lineages. Annu. Rev. Immunol. 11, 501–538 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Kabat, E. A. & Wu, T. T. Identical V region amino acid sequences and segments of sequences in antibodies of different specificities. Relative contributions of VH and VL genes, minigenes, and complementarity-determining regions to binding of antibody-combining sites. J. Immunol. 147, 1709–1719 (1991).

    CAS  PubMed  Google Scholar 

  45. Feeney, A. J. Lack of N regions in fetal and neonatal mouse immunoglobulin V-D-J junctional sequences. J. Exp. Med. 172, 1377–1390 (1990).

    Article  CAS  PubMed  Google Scholar 

  46. Herzenberg, L. A., Baumgarth, N. & Wilshire, J. A. B-1 cell origins and VH repertoire determination. Curr. Top. Microbiol. Immunol. 252, 3–13 (2000).

    CAS  PubMed  Google Scholar 

  47. Hardy, R. R. & Hayakawa, K. Positive and negative selection of natural autoreactive B cells. Adv. Exp. Med. Biol. 750, 227–238 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Chou, M. Y. et al. Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans. J. Clin. Invest. 119, 1335–1349 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Subramaniam, K. S. et al. The absence of serum IgM enhances the susceptibility of mice to pulmonary challenge with Cryptococcus neoformans. J. Immunol. 184, 5755–5767 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gobet, R., Cerny, A., Ruedi, E., Hengartner, H. & Zinkernagel, R. M. The role of antibodies in natural and acquired resistance of mice to vesicular stomatitis virus. Exp. Cell Biol. 56, 175–180 (1988).

    CAS  PubMed  Google Scholar 

  51. Ochsenbein, A. F. et al. Control of early viral and bacterial distribution and disease by natural antibodies. Science 286, 2156–2159 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Boes, M. et al. Enhanced B-1 cell development, but impaired IgG antibody responses in mice deficient in secreted IgM. J. Immunol. 160, 4776–4787 (1998).

    CAS  PubMed  Google Scholar 

  53. Baumgarth, N., Chen, J., Herman, O. C., Jager, G. C. & Herzenberg, L. A. The role of B-1 and B-2 cells in immune protection from influenza virus infection. Curr. Top. Microbiol. Immunol. 252, 163–169 (2000).

    CAS  PubMed  Google Scholar 

  54. Alugupalli, K. R. et al. The resolution of relapsing fever borreliosis requires IgM and is concurrent with expansion of B1b lymphocytes. J. Immunol. 170, 3819–3827 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Choi, Y. S. & Baumgarth, N. Dual role for B-1a cells in immunity to influenza virus infection. J. Exp. Med. 205, 3053–3064 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cancro, M. P., Sigal, N. H. & Klinman, N. R. Differential expression of an equivalent clonotype among BALB/c and C57BL/6 mice. J. Exp. Med. 147, 1–12 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Satow, Y., Cohen, G. H., Padlan, E. A. & Davies, D. R. Phosphocholine binding immunoglobulin Fab McPC603. An X-ray diffraction study at 2.7 Å. J. Mol. Biol. 190, 593–604 (1986).

    Article  CAS  PubMed  Google Scholar 

  58. Sigal, N. H., Pickard, A. R., Metcalf, E. S., Gearhart, P. J. & Klinman, N. R. Expression of phosphorylcholine-specific B cells during murine development. J. Exp. Med. 146, 933–948 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Masmoudi, H., Mota-Santos, T., Huetz, F., Coutinho, A. & Cazenave, P. A. All T15 Id-positive antibodies (but not the majority of VHT15+ antibodies) are produced by peritoneal CD5+ B lymphocytes. Int. Immunol. 2, 515–520 (1990).

    Article  CAS  PubMed  Google Scholar 

  60. McDaniel, L. S., Benjamin, W. H. J., Forman, C. & Briles, D. E. Blood clearance by anti-phosphocholine antibodies as a mechanism of protection in experimental pneumococcal bacteremia. J. Immunol. 133, 3308–3312 (1984).

    CAS  PubMed  Google Scholar 

  61. Taki, S., Meiering, M. & Rajewsky, K. Targeted insertion of a variable region gene into the immunoglobulin heavy chain locus. Science 262, 1268–1271 (1993).

    Article  CAS  PubMed  Google Scholar 

  62. Sieckmann, D. G. et al. B cells from M167 μ κ transgenic mice fail to proliferate after stimulation with soluble anti-Ig antibodies. A model for antigen-induced B cell anergy. J. Immunol. 152, 4873–4883 (1994).

    CAS  PubMed  Google Scholar 

  63. Kenny, J. J. et al. Autoreactive B cells escape clonal deletion by expressing multiple antigen receptors. J. Immunol. 164, 4111–4119 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Kenny, J. J. et al. Antigen binding and idiotype analysis of antibodies obtained after electroporation of heavy and light chain genes encoding phosphocholine-specific antibodies: a model for T15-idiotype dominance. J. Exp. Med. 176, 1637–1643 (1992).

    Article  CAS  PubMed  Google Scholar 

  65. Griffin, D. O., Holodick, N. E. & Rothstein, T. L. Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+ CD27+ CD43+ CD70+. J. Exp. Med. 208, 67–80 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sivri, A. & Hascelik, Z. IgM deficiency in systemic lupus erythematosus patients. Arthritis Rheum. 38, 1713 (1995).

    Article  CAS  PubMed  Google Scholar 

  67. Saiki, O. et al. Development of selective IgM deficiency in systemic lupus erythematosus patients with disease of long duration. Arthritis Rheum. 30, 1289–1292 (1987).

    Article  CAS  PubMed  Google Scholar 

  68. Perazzio, S. F., Salomao, R., Silva, N. P., Carneiro-Sampaio, M. & Andrade, L. E. Serial screening shows that 28% of systemic lupus erythematosus adult patients carry an underlying primary immunodeficiency [abstract 657]. Arthritis Rheum. 64, S284 (2012).

    Google Scholar 

  69. Silverman, G. J. et al. Genetic imprinting of autoantibody repertoires in SLE patients. Clin. Exp. Immunol. 153, 102–116 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Silverman, G. J. Regulatory natural autoantibodies to apoptotic cells: pallbearers and protectors. Arthritis Rheum 63, 597–602 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kagan, V. E. et al. Oxidative lipidomics of apoptosis: redox catalytic interactions of cytochrome c with cardiolipin and phosphatidylserine. Free Radic. Biol. Med. 37, 1963–1985 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Ogden, C. A. et al. C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J. Exp. Med. 194, 781–795 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Matsushita, M. et al. Origin of the classical complement pathway: Lamprey orthologue of mammalian C1q acts as a lectin. Proc. Natl Acad. Sci. USA 101, 10127–10131 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Korb, L. C. & Ahearn, J. M. C1q binds directly and specifically to surface blebs of apoptotic human keratinocytes: complement deficiency and systemic lupus erythematosus revisited. J. Immunol. 158, 4525–4528 (1997).

    CAS  PubMed  Google Scholar 

  75. Steinberg, D., Parthasarathy, S., Carew, T. E., Khoo, J. C. & Witztum, J. L. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N. Engl. J. Med. 320, 915–924 (1989).

    Article  CAS  PubMed  Google Scholar 

  76. Shaw, P. X. et al. Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. J. Clin. Invest. 105, 1731–1740 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Binder, C. J. et al. Pneumococcal vaccination decreases atherosclerotic lesion formation: Molecular mimicry between oxidized LDL and Streptococcus pneumoniae. Nat. Med. 9, 736–743 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Lewis, M. J. et al. Immunoglobulin M is required for protection against atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation 120, 417–426 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Reardon, C. A. et al. Autoantibodies to OxLDL fail to alter the clearance of injected OxLDL in apolipoprotein E-deficient mice. J. Lipid Res. 45, 1347–1354 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Steinman, R. M. The control of immunity and tolerance by dendritic cell. Pathol. Biol. (Paris) 51, 59–60 (2003).

    Article  CAS  Google Scholar 

  81. Fadok V. A. et al. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-β, PGE2, and PAF. J. Clin. Invest. 101, 890–898 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ogden, C. A., Kowalewski, R., Peng, Y., Montenegro, V. & Elkon, K. B. IgM is required for efficient complement mediated phagocytosis of apoptotic cells in vivo. Autoimmunity 38, 259–264 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Quartier, P., Potter, P. K., Ehrenstein, M. R., Walport, M. J. & Botto, M. Predominant role of IgM-dependent activation of the classical pathway in the clearance of dying cells by murine bone marrow-derived macrophages in vitro. Eur. J. Immunol. 35, 252–260 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Hughey, C. T., Brewer, J. W., Colosia, A. D., Rosse, W. F. & Corley, R. B. Production of IgM hexamers by normal and autoimmune B cells: implications for the physiologic role of hexameric IgM. J. Immunol. 161, 4091–4097 (1998).

    CAS  PubMed  Google Scholar 

  85. Arnold, J. N., Dwek, R. A., Rudd, P. M. & Sim, R. B. Mannan binding lectin and its interaction with immunoglobulins in health and in disease. Immunol. Lett. 106, 103–110 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Fraser, D. A., Laust, A. K., Nelson, E. L. & Tenner, A. J. C1q differentially modulates phagocytosis and cytokine responses during ingestion of apoptotic cells by human monocytes, macrophages, and dendritic cells. J. Immunol. 183, 6175–6185 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Stuart, L. M., Takahashi, K., Shi, L., Savill, J. & Ezekowitz, R. A. Mannose-binding lectin-deficient mice display defective apoptotic cell clearance but no autoimmune phenotype. J. Immunol. 174, 3220–3226 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Taylor, P. R. et al. A hierarchical role for classical pathway complement proteins in the clearance of apoptotic cells in vivo. J. Exp. Med. 192, 359–366 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Vas, J., Gronwall, C., Marshak-Rothstein, A. & Silverman, G. J. Natural antibody to apoptotic cell membranes inhibits the proinflammatory properties of lupus autoantibody immune complexes. Arthritis Rheum. 64, 3388–3398 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hammaker, D. & Firestein, G. S. “Go upstream, young man”: lessons learned from the p38 saga. Ann. Rheum. Dis. 69 (Suppl. 1), i77–i82 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Clark, A. R. MAP kinase phosphatase 1: a novel mediator of biological effects of glucocorticoids? J. Endocrinol. 178, 15–12 (2003).

    Article  Google Scholar 

  92. Grönwall, C. et al. MAPK Phosphatase-1 is required for regulatory natural autoantibody mediated inhibition of TLR responses. Proc. Natl Acad. Sci. USA 109, 19745–19750 (2012).

    Article  PubMed  Google Scholar 

  93. Liu, Y., Shepherd, E. G. & Nelin, L. D. MAPK phosphatases—regulating the immune response. Nat. Rev. Immunol. 7, 202–212 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Terato, K. et al. Induction of arthritis with monoclonal antibodies to collagen. J. Immunol. 148, 2103–2108 (1992).

    CAS  PubMed  Google Scholar 

  95. Trentham, D. E., Townes, A. S. & Kang, A. H. Autoimmunity to type II collagen an experimental model of arthritis. J. Exp. Med. 146, 857–868 (1977).

    Article  CAS  PubMed  Google Scholar 

  96. Kleinau, S., Martinsson, P. & Heyman, B. Induction and suppression of collagen-induced arthritis is dependent on distinct Fcγ receptors. J. Exp. Med. 191, 1611–1616 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Notley, C. A., Brown, M. A., Wright, G. P. & Ehrenstein, M. R. Natural IgM is required for suppression of inflammatory arthritis by apoptotic cells. J. Immunol. 186, 4967–4972 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Brown, M., Schiffman, G. & Rittenberg, M. B. Subpopulations of antibodies to phosphocholine in human serum. J. Immunol. 132, 1323–1328 (1984).

    CAS  PubMed  Google Scholar 

  99. Padilla, N. D., Ciurana, C., van Oers, J., Ogilvie, A. C. & Hack, C. E. Levels of natural IgM antibodies against phosphorylcholine in healthy individuals and in patients undergoing isolated limb perfusion. J. Immunol. Methods 293, 1–11 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. de Faire, U. et al. Low levels of IgM antibodies to phosphorylcholine predict cardiovascular disease in 60-year old men: effects on uptake of oxidized LDL in macrophages as a potential mechanism. J. Autoimmun. 34, 73–79 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Fiskesund, R. et al. Low levels of antibodies against phosphorylcholine predict development of stroke in a population-based study from northern Sweden. Stroke. 41, 607–612 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Svenungsson, E. et al. Risk factors for cardiovascular disease in systemic lupus erythematosus. Circulation 104, 1887–1893 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Su, J. et al. Natural antibodies against phosphorylcholine as potential protective factors in SLE. Rheumatology (Oxford) 47, 1144–1150 (2008).

    Article  CAS  Google Scholar 

  104. Ajeganova, S., de Faire, U., Jogestrand, T., Frostegard, J. & Hafstrom, I. Carotid atherosclerosis, disease measures, oxidized low-density lipoproteins, and atheroprotective natural antibodies for cardiovascular disease in early rheumatoid arthritis—an inception cohort study. J. Rheumatol. 39, 1146–1154 (2012).

    Article  PubMed  Google Scholar 

  105. Gronwall, C. et al. IgM autoantibodies to distinct apoptosis-associated antigens correlate with protection from cardiovascular events and renal disease in patients with SLE. Clin. Immunol. 142, 390–398 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mehrani, T. & Petri, M. A. IgM anti-β2 glycoprotein I is protective against lupus nephritis and renal damage in SLE. Arthritis Rheum. 38, 450–453 (2011).

    Google Scholar 

  107. Casali, P. & Schettino, E. W. Structure and function of natural antibodies. Curr. Top. Microbiol. Immunol. 210, 167–179 (1996).

    CAS  PubMed  Google Scholar 

  108. Coutinho, A., Kazatchkine, M. D. & Avrameas, S. Natural autoantibodies. Curr. Opin. Immunol. 7, 812–818 (1995).

    Article  CAS  PubMed  Google Scholar 

  109. Czajkowsky, D. M. & Shao, Z. The human IgM pentamer is a mushroom-shaped molecule with a flexural bias. Proc. Natl Acad. Sci. USA 106, 14960–14965 (2009).

    Article  PubMed  Google Scholar 

  110. Liszewski, M. K., Fang, C. J. & Atkinson, J. P. Inhibiting complement activation on cells at the step of C3 cleavage. Vaccine 26 (Suppl. 8), i22–i27 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Tenner, A. J. Membrane receptors for soluble defense collagens. Curr. Opin. Immunol. 11, 34–41 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Zhang, M. et al. Activation of the lectin pathway by natural IgM in a model of ischemia/reperfusion injury. J. Immunol. 177, 4727–4734 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Warrington, A. E., Van Keulen, V., Pease, L. R. & Rodriguez, M. Naturally occurring antibodies as therapeutics for neurologic disease: can human monoclonal IgMs replace the limited resource IVIG? Adv. Exp. Med. Biol. 750, 44–55 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Nielen, M. M. et al. Specific autoantibodies precede the symptoms of rheumatoid arthritis: a study of serial measurements in blood donors. Arthritis Rheum. 50, 380–386 (2004).

    Article  PubMed  Google Scholar 

  115. van de Stadt, L. A. et al. The extent of the anti-citrullinated protein antibody repertoire is associated with arthritis development in patients with seropositive arthralgia. Ann. Rheum. Dis. 70, 128–133 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Deane, K. D., Norris, J. M. & Holers, V. M. Preclinical rheumatoid arthritis: identification, evaluation, and future directions for investigation. Rheum. Dis. Clin. North Am. 36, 213–241 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Klareskog, L. et al. What precedes development of rheumatoid arthritis? Ann. Rheum. Dis. 63 (Suppl. 2), ii28–ii31 (2004).

    PubMed  PubMed Central  Google Scholar 

  118. Holers, V. M. Antibodies to citrullinated proteins: pathogenic and diagnostic significance. Curr. Rheumatol. Rep. 9, 396–400 (2007).

    Article  PubMed  Google Scholar 

  119. Binder, C. J. & Silverman, G. J. Natural antibodies and the autoimmunity of atherosclerosis. Springer Semin. Immunopathol. 26, 385–404 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Kaveri, S. V., Silverman, G. J. & Bayry, J. Natural IgM in immune equilibrium and harnessing their therapeutic potential. J. Immunol. 188, 939–945 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Our work has been supported by grants from the NIH; R01AI090118, R01 AI068063 and ARRA supplement, R01AI090118, and from the ACR REF Within Our Reach campaign, the Alliance for Lupus Research, the Arthritis Foundation, and the P. Robert Majumder Charitable Trust.

Author information

Authors and Affiliations

Authors

Contributions

G. J. Silverman and J. Vas researched data for the article; G. J. Silverman and C. Grönwall wrote the article and made substantial contributions to review and/or editing of the article before submission. All authors made substantial contributions to discussing the content of this article.

Corresponding author

Correspondence to Gregg J. Silverman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silverman, G., Vas, J. & Grönwall, C. Protective autoantibodies in the rheumatic diseases: lessons for therapy. Nat Rev Rheumatol 9, 291–300 (2013). https://doi.org/10.1038/nrrheum.2013.30

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2013.30

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing