Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fracture healing under healthy and inflammatory conditions

Abstract

Optimal fracture treatment requires knowledge of the complex physiological process of bone healing. The course of bone healing is mainly influenced by fracture fixation stability (biomechanics) and the blood supply to the healing site (revascularization after trauma). The repair process proceeds via a characteristic sequence of events, described as the inflammatory, repair and remodeling phases. An inflammatory reaction involving immune cells and molecular factors is activated immediately in response to tissue damage and is thought to initiate the repair cascade. Immune cells also have a major role in the repair phase, exhibiting important crosstalk with bone cells. After bony bridging of the fragments, a slow remodeling process eventually leads to the reconstitution of the original bone structure. Systemic inflammation, as observed in patients with rheumatoid arthritis, diabetes mellitus, multiple trauma or sepsis, can increase fracture healing time and the rate of complications, including non-unions. In addition, evidence suggests that insufficient biomechanical conditions within the fracture zone can influence early local inflammation and impair bone healing. In this Review, we discuss the main factors that influence fracture healing, with particular emphasis on the role of inflammation.

Key Points

  • Fracture healing is a complex, highly regulated process with consecutive and closely linked phases of inflammation, repair and remodeling

  • Optimal fracture healing requires suitable biological as well as biomechanical conditions

  • The mechanical environment considerably influences tissue differentiation during bone healing: stable fracture fixation induces direct bone formation, moderate stability provokes endochondral ossification, whereas unstable fixation inhibits bone healing

  • The immune system is intimately involved in the fracture healing process, especially during the early inflammatory healing phase

  • Disorders associated with systemic inflammation, such as diabetes mellitus, trauma, sepsis and rheumatoid arthritis, can prolong or disturb fracture healing and increase the risk of non-unions by incompletely understood mechanisms

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Main factors affecting the fracture healing process.
Figure 2: Secondary diaphyseal bone healing in a sheep tibia osteotomy model.
Figure 3: Images demonstrating the metaphyseal bone healing process.
Figure 4: Primary diaphyseal bone healing in a sheep metatarsal osteotomy model.
Figure 5: Time course of fracture healing events in rats.
Figure 6: Schematic representation of inflammation and repair during fracture healing.

Similar content being viewed by others

References

  1. Buckwalter, J. A., Einhorn, T. A., Bolander, M. E. & Cruess, R. L. in Rockwood and Green's Fractures in Adults, 4th edn (eds Rockwood, C. A. Jr. et al.) 261–304 (Lippincott-Raven, Philadelphia, 1996).

    Google Scholar 

  2. Sarmiento, A. & Latta, L. L. Closed Functional Treatment of Fractures (Springer-Verlag, New York; Berlin, 1981).

    Book  Google Scholar 

  3. Rüedi, T. P. & Murphy, W. M. (eds) AO Principles of Fracture Management (Thieme, Stuttgart, 2000).

    Google Scholar 

  4. Bhandari, M. et al. Predictors of reoperation following operative management of fractures of the tibial shaft. J. Orthop. Trauma 17, 353–361 (2003).

    Article  PubMed  Google Scholar 

  5. Karladani, A. H., Granhed, H., Kärrholm, J. & Styf, J. The influence of fracture etiology and type on fracture healing: a review of 104 consecutive tibial shaft fractures. Arch. Orthop. Trauma Surg. 121, 325–328 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Hayda, R. A., Brighton, C. T. & Esterhai, J. L. Jr. Pathophysiology of delayed healing. Clin. Orthop. Relat. Res. 355 (Suppl.), S31–S40 (1998).

    Article  Google Scholar 

  7. McKibbin, B. The biology of fracture healing in long bones. J. Bone Joint Surg. Br. 60-B, 150–162 (1978).

    Article  CAS  PubMed  Google Scholar 

  8. Claes, L. E. & Cunningham, J. L. Monitoring the mechanical properties of healing bone. Clin. Orthop. Relat. Res. 467, 1964–1971 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Histing, T. et al. Ex vivo analysis of rotational stiffness of different osteosynthesis techniques in mouse femur fracture. J. Orthop. Res. 27, 1152–1156 (2009).

    Article  PubMed  Google Scholar 

  10. Histing, T. et al. Small animal bone healing models: standards, tips, and pitfalls results of a consensus meeting. Bone 49, 591–599 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Willie, B., Adkins, K., Zheng, X., Simon, U. & Claes, L. Mechanical characterization of external fixator stiffness for a rat femoral fracture model. J. Orthop. Res. 27, 687–693 (2009).

    Article  PubMed  Google Scholar 

  12. Einhorn, T. A. The cell and molecular biology of fracture healing. Clin. Orthop. Relat. Res., 355 (Suppl.), S7–S21 (1998).

    Article  Google Scholar 

  13. Gerstenfeld, L. C., Cullinane, D. M., Barnes, G. L., Graves, D. T. & Einhorn, T. A. Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J. Cell. Biochem. 88, 873–884 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Perren, S. M. Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology. J. Bone Joint Surg. Br. 84-B, 1093–1110 (2002).

    Article  Google Scholar 

  15. Claes, L. Biomechanical principles and mechanobiologic aspects of flexible and locked plating. J. Orthop. Trauma 25 (Suppl. 1), S4–S7 (2011).

    Article  PubMed  Google Scholar 

  16. Claes, L. E. & Heigele, C. A. Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J. Biomech. 32, 255–266 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Claes, L. E. & Ito, K. in Basic Orthopaedic Biomechanics and Mechano-Biology, 3rd edn (eds Mow, V. C. & Huiskes, R.) 563–584 (Lippincott Williams & Wilkins, Philadelphia, 2005).

    Google Scholar 

  18. Duda, G. N. et al. Mechanical behavior of Ilizarov ring fixators. Effect of frame parameters on stiffness and consequences for clinical use. Unfallchirurg 103, 839–845 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Duda, G. N. et al. Interfragmentary motion in tibial osteotomies stabilized with ring fixators. Clin. Orthop.Relat. Res. 396, 163–172 (2002).

    Article  Google Scholar 

  20. Augat, P. et al. Shear movement at the fracture site delays healing in a diaphyseal fracture model. J. Orthop. Res. 21, 1011–1017 (2003).

    Article  PubMed  Google Scholar 

  21. Augat, P. et al. Early, full weightbearing with flexible fixation delays fracture healing. Clin. Orthop. Relat. Res. 328, 194–202 (1996).

    Article  Google Scholar 

  22. Claes, L., Augat, P., Suger, G. & Wilke, H. J. Influence of size and stability of the osteotomy gap on the success of fracture healing. J. Orthop. Res. 15, 577–584 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Epari, D. R., Schell, H., Bail, H. J. & Duda, G. N. Instability prolongs the chondral phase during bone healing in sheep. Bone 38, 864–870 (2006).

    Article  PubMed  Google Scholar 

  24. Küntscher, G. Praxis der Marknagelung [German] (Schattauer, Stuttgart, 1962).

    Google Scholar 

  25. Duda, G. N. et al. Mechanical boundary conditions of fracture healing: borderline indications in the treatment of unreamed tibial nailing. J. Biomech. 34, 639–650 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Schandelmaier, P., Krettek, C. & Tscherne, H. Biomechanical study of nine different tibia locking nails. J. Orthop. Trauma 10, 37–44 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Wehner, T., Penzkofer, R., Augat, P., Claes, L. & Simon, U. Improvement of the shear fixation stability of intramedullary nailing. Clin. Biomech. (Bristol, Avon) 26, 147–151 (2011).

    Article  Google Scholar 

  28. Bottlang, M. et al. Far cortical locking can improve healing of fractures stabilized with locking plates. J. Bone Joint Surg. Am. 92, 1652–1660 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Uhthoff, H. K., Goto, S. & Cerckel, P. H. Influence of stable fixation on trabecular bone healing: a morphologic assessment in dogs. J. Orthop. Res. 5, 14–22 (1987).

    Article  CAS  PubMed  Google Scholar 

  30. Claes, L. et al. Moderate soft tissue trauma delays new bone formation only in the early phase of fracture healing. J. Orthop. Res. 24, 1178–1185 (2006).

    Article  PubMed  Google Scholar 

  31. Grundnes, O. & Reikeras, O. Blood flow and mechanical properties of healing bone. Femoral osteotomies studied in rats. Acta Orthop. Scand. 63, 487–491 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Melnyk, M., Henke, T., Claes, L. & Augat, P. Revascularisation during fracture healing with soft tissue injury. Arch. Orthop. Trauma Surg. 128, 1159–1165 (2008).

    Article  PubMed  Google Scholar 

  33. Mohanti, R. C. & Mahakul, N. C. Vascular response in fractured limbs with and without immobilisation: an experimental study on rabbits. Int. Orthop. 7, 173–177 (1983).

    Article  CAS  PubMed  Google Scholar 

  34. Brookes, M. & Revell, W. J. Blood Supply of Bone: Scientific Aspects (Springer, London, 1998).

    Book  Google Scholar 

  35. Rhinelander, F. W. Tibial blood supply in relation to fracture healing. Clin. Orthop. Relat. Res. 105, 34–81 (1974).

    Article  Google Scholar 

  36. Strachan, R. K., McCarthy, I., Fleming, R. & Hughes, S. P. The role of the tibial nutrient artery. Microsphere estimation of blood flow in the osteotomised canine tibia. J. Bone Joint Surg. Br. 72-B, 391–394 (1990).

    Article  Google Scholar 

  37. Triffitt, P. D., Cieslak, C. A. & Gregg, P. J. A quantitative study of the routes of blood flow to the tibial diaphysis after an osteotomy. J. Orthop. Res. 11, 49–57 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Claes, L., Heitemeyer, U., Krischak, G., Braun, H. & Hierholzer, G. Fixation technique influences osteogenesis of comminuted fractures. Clin. Orthop. Relat. Res. 365, 221–229 (1999).

    Article  Google Scholar 

  39. Smith, S. R., Bronk, J. T. & Kelly, P. J. Effect of fracture fixation on cortical bone blood flow. J. Orthop. Res. 8, 471–478 (1990).

    Article  CAS  PubMed  Google Scholar 

  40. Olerud, S. & Strömberg, L. Intramedullary reaming and nailing: its early effects on cortical bone vascularization. Orthopedics 9, 1204–1208 (1986).

    CAS  PubMed  Google Scholar 

  41. Wallace, A. L., Draper, E. R., Strachan, R. K., McCarthy, I. D. & Hughes, S. P. The vascular response to fracture micromovement. Clin. Orthop. Relat. Res. 301, 281–290 (1994).

    Google Scholar 

  42. Claes, L., Eckert-Hübner, K. & Augat, P. The effect of mechanical stability on local vascularization and tissue differentiation in callus healing. J. Orthop. Res. 20, 1099–1105 (2002).

    Article  PubMed  Google Scholar 

  43. Wallace, A. L., Draper, E. R., Strachan, R. K., McCarthy, I. D. & Hughes, S. P. The effect of devascularisation upon early bone healing in dynamic external fixation. J. Bone Joint Surg. Br. 73-B, 819–825 (1991).

    Article  Google Scholar 

  44. Utvåg, S. E., Grundnes, O., Rindal, D. B. & Reikerås, O. Influence of extensive muscle injury on fracture healing in rat tibia. J. Orthop. Trauma 17, 430–435 (2003).

    Article  PubMed  Google Scholar 

  45. Claes, L. et al. The effect of both a thoracic trauma and a soft-tissue trauma on fracture healing in a rat model. Acta Orthop. 82, 223–227 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hausman, M. R., Schaffler, M. B. & Majeska, R. J. Prevention of fracture healing in rats by an inhibitor of angiogenesis. Bone 29, 560–564 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Kolar, P. et al. The early fracture hematoma and its potential role in fracture healing. Tissue Eng. Part B Rev. 16, 427–434 (2010).

    Article  PubMed  Google Scholar 

  48. Wray, J. B. Acute changes in femoral arterial blood flow after closed tibial fracture in dogs. J. Bone Joint Surg. Am. 46, 1262–1268 (1964).

    Article  CAS  PubMed  Google Scholar 

  49. Aho, A. J. Electron microscopic and histological observations on fracture repair in young and old rats. Acta Pathol. Microbiol. Scand. 184 (Suppl.), 1–95 (1966).

    Google Scholar 

  50. Kolar, P., Gaber, T., Perka, C., Duda, G. N. & Buttgereit, F. Human early fracture hematoma is characterized by inflammation and hypoxia. Clin. Orthop. Relat. Res. 469, 3118–3126 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chung, R., Cool, J. C., Scherer, M. A., Foster, B. K. & Xian, C. J. Roles of neutrophil-mediated inflammatory response in the bony repair of injured growth plate cartilage in young rats. J. Leukoc. Biol. 80, 1272–1280 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Bastian, O. et al. Systemic inflammation and fracture healing. J. Leukoc. Biol. 89, 669–673 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Andrew, J. G., Andrew, S. M., Freemont, A. J. & Marsh, D. R. Inflammatory cells in normal human fracture healing. Acta Orthop. Scand. 65, 462–466 (1994).

    Article  CAS  PubMed  Google Scholar 

  54. Xing, Z. et al. Multiple roles for CCR2 during fracture healing. Dis. Model. Mech. 3, 451–458 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gökturk, E. et al. Oxygen-free radicals impair fracture healing in rats. Acta Orthop. Scand. 66, 473–475 (1995).

    Article  PubMed  Google Scholar 

  56. Alexander, K. et al. Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. J. Bone Miner. Res. 26, 1517–1532 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Ai-Aql, Z. S., Alagl, A. S., Graves, D. T., Gerstenfeld, L. C. & Einhorn, T. A. Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J. Dent. Res. 87, 107–118 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kon, T. et al. Expression of osteoprotegerin, receptor activator of NF-κB ligand (osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing. J. Bone Miner. Res. 16, 1004–1014 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Schmidt-Bleek, K. et al. Inflammatory phase of bone healing initiates the regenerative healing cascade. Cell Tissue Res. http://dx.doi.org/10.1007/s00441-011-1205-7.

  60. Lienau, J. et al. Differential regulation of blood vessel formation between standard and delayed bone healing. J. Orthop. Res. 27, 1133–1140 (2009).

    Article  PubMed  Google Scholar 

  61. Decker, B., Bartels, H. & Decker, S. Relationships between endothelial cells, pericytes, and osteoblasts during bone formation in the sheep femur following implantation of tricalciumphosphate-ceramic. Anat. Rec. 242, 310–320 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Marsell, R. & Einhorn, T. A. The biology of fracture healing. Injury 42, 551–555 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Einhorn, T. A. The science of fracture healing. J. Orthop. Trauma 19, S4–S6 (2005).

    Article  PubMed  Google Scholar 

  64. Cho, T. J., Gerstenfeld, L. C. & Einhorn, T. A. Differential temporal expression of members of the transforming growth factor β superfamily during murine fracture healing. J. Bone Miner. Res. 17, 513–520 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Granero-Moltó, F. et al. Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells 27, 1887–1898 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cottrell, J. & O'Connor, J. P. Effect of non-steroidal anti-inflammatory drugs on bone healing. Pharmaceuticals 3, 1668–1693 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Naik, A. A. et al. Reduced COX-2 expression in aged mice is associated with impaired fracture healing. J. Bone Miner. Res. 24, 251–264 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Harder, A. T. & An, Y. H. The mechanisms of the inhibitory effects of nonsteroidal anti-inflammatory drugs on bone healing: a concise review. J. Clin. Pharmacol. 43, 807–815 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Perren, S. M. & Claes, L. in Fracture Management in AO Principles of Fracture Management (eds Rüedi, T. P. & Murphy, W. M.) 7–30 (Thieme-Verlag, Stuttgart-New York, 2000).

    Google Scholar 

  70. Willenegger, H., Perren, S. M. & Schenk, R. Primary and secondary healing of bone fractures. Chirurg. 42, 241–252 (1971).

    CAS  PubMed  Google Scholar 

  71. Claes, L. et al. Monitoring and healing analysis of 100 tibial shaft fractures. Langenbecks Arch. Surg. 387, 146–152 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Duda, G. N. et al. Mechanical conditions in the internal stabilization of proximal tibial defects. Clin. Biomech. (Bristol, Avon) 17, 64–72 (2002).

    Article  Google Scholar 

  73. Nakahara, H. et al. Bone and cartilage formation in diffusion chambers by subcultured cells derived from the periosteum. Bone 11, 181–188 (1990).

    Article  CAS  PubMed  Google Scholar 

  74. Bassett, C. A. & Herrmann, I. Influence of oxygen concentration and mechanical factors on differentiation of connective tissues in vitro. Nature 190, 460–461 (1961).

    Article  CAS  PubMed  Google Scholar 

  75. Phillips, A. M. Overview of the fracture healing cascade. Injury 36 (Suppl. 3), S5–S7 (2005).

    Article  PubMed  Google Scholar 

  76. Claes, L. et al. Metaphyseal fracture healing follows similar biomechanical rules as diaphyseal healing. J. Orthop. Res. 29, 425–432 (2011).

    Article  PubMed  Google Scholar 

  77. Jarry, L. & Uhthoff, H. K. Differences in healing of metaphyseal and diaphyseal fractures. Can. J. Surg. 14, 127–135 (1971).

    CAS  PubMed  Google Scholar 

  78. Uhthoff, H. K. & Rahn, B. A. Healing patterns of metaphyseal fractures. Clin. Orthop. Relat. Res. 160, 295–303 (1981).

    Google Scholar 

  79. Schatzker, J., Waddell, J. & Stoll, J. E. The effects of motion on the healing of cancellous bone. Clin. Orthop. Relat. Res. 245, 282–287 (1989).

    Google Scholar 

  80. Aronson, J. & Shen, X. Experimental healing of distraction osteogenesis comparing metaphyseal with diaphyseal sites. Clin. Orthop. Relat. Res. 301, 25–30 (1994).

    Google Scholar 

  81. Fan, W., Crawford, R. & Xiao, Y. Structural and cellular differences between metaphyseal and diaphyseal periosteum in different aged rats. Bone 42, 81–89 (2008).

    Article  PubMed  Google Scholar 

  82. Hardy, R. & Cooper, M. S. Bone loss in inflammatory disorders. J. Endocrinol. 201, 309–320 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Clowes, J. A., Riggs, B. L. & Khosla, S. The role of the immune system in the pathophysiology of osteoporosis. Immunol. Rev. 208, 207–227 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Alexandraki, K. I. et al. Cytokine secretion in long-standing diabetes mellitus type 1 and 2: associations with low-grade systemic inflammation. J. Clin. Immunol. 28, 314–321 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. O'Rourke, R. W. Molecular mechanisms of obesity and diabetes: at the intersection of weight regulation, inflammation, and glucose homeostasis. World J. Surg. 33, 2007–2013 (2009).

    Article  PubMed  Google Scholar 

  86. Cao, J. J. Effects of obesity on bone metabolism. J. Orthop. Surg. Res. 6, 30 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Loder, R. T. The influence of diabetes mellitus on the healing of closed fractures. Clin. Orthop. Relat. Res. 232, 210–216 (1988).

    Google Scholar 

  88. Alblowi, J. et al. High levels of tumor necrosis factor-α contribute to accelerated loss of cartilage in diabetic fracture healing. Am. J. Pathol. 175, 1574–1585 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kayal, R. A. et al. TNF-α mediates diabetes-enhanced chondrocyte apoptosis during fracture healing and stimulates chondrocyte apoptosis through FOXO1. J. Bone Miner. Res. 25, 1604–1615 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kayal, R. A. et al. Diminished bone formation during diabetic fracture healing is related to the premature resorption of cartilage associated with increased osteoclast activity. J. Bone Miner. Res. 22, 560–568 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Strömqvist, B. Hip fracture in rheumatoid arthritis. Acta Orthop. Scand. 55, 624–628 (1984).

    Article  PubMed  Google Scholar 

  92. Dominiak, B., Oxberry, W. & Chen, P. Study on a nonhealing fracture from a patient with systemic lupus erythematosus and its pathogenetic mechanisms. Ultrastruct. Pathol. 29, 107–120 (2005).

    Article  PubMed  Google Scholar 

  93. Grøgaard, B., Gerdin, B. & Reikerås, O. The polymorphonuclear leukocyte: has it a role in fracture healing? Arch. Orthop. Trauma Surg. 109, 268–271 (1990).

    Article  PubMed  Google Scholar 

  94. Keel, M. & Trentz, O. Pathophysiology of polytrauma. Injury 36, 691–709 (2005).

    Article  PubMed  Google Scholar 

  95. Recknagel, S. et al. Experimental blunt chest trauma impairs fracture healing in rats. J. Orthop. Res. 29, 734–739 (2011).

    Article  PubMed  Google Scholar 

  96. Recknagel, S. et al. C5aR-antagonist significantly reduces the deleterious effect of a blunt chest trauma on fracture healing. J. Orthop. Res. http://dx.doi.org/10.1002/jor.21561.

  97. Reikerås, O., Shegarfi, H., Wang, J. E. & Utvåg, S. E. Lipopolysaccharide impairs fracture healing: an experimental study in rats. Acta Orthop. 76, 749–753 (2005).

    Article  PubMed  Google Scholar 

  98. Champagne, C. M., Takebe, J., Offenbacher, S. & Cooper, L. F. Macrophage cell lines produce osteoinductive signals that include bone morphogenetic protein-2. Bone 30, 26–31 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Grundnes, O. & Reikeraas, O. Effects of macrophage activation on bone healing. J. Orthop. Sci. 5, 243–247 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Gerstenfeld, L. C. et al. Impaired fracture healing in the absence of TNF-α signaling: the role of TNF-α in endochondral cartilage resorption. J. Bone Miner. Res. 18, 1584–1592 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Yang, X. et al. Callus mineralization and maturation are delayed during fracture healing in interleukin-6 knockout mice. Bone 41, 928–936 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wallace, A., Cooney, T. E., Englund, R. & Lubahn, J. D. Effects of interleukin-6 ablation on fracture healing in mice. J. Orthop. Res. 29, 1437–1442 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Bogoch, E., Gschwend, N., Rahn, B., Moran, E. & Perren, S. Healing of cancellous bone osteotomy in rabbits—Part I: regulation of bone volume and the regional acceleratory phenomenon in normal bone. J. Orthop. Res. 11, 285–291 (1993).

    Article  CAS  PubMed  Google Scholar 

  104. Bogoch, E., Gschwend, N., Rahn, B., Moran, E. & Perren, S. Healing of cancellous bone osteotomy in rabbits—Part II: local reversal of arthritis-induced osteopenia after osteotomy. J. Orthop. Res. 11, 292–298 (1993).

    Article  CAS  PubMed  Google Scholar 

  105. Wang, H. et al. Thrombin peptide (TP508) promotes fracture repair by up-regulating inflammatory mediators, early growth factors, and increasing angiogenesis. J. Orthop. Res. 23, 671–679 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Hankemeier, S. et al. Alteration of fracture stability influences chondrogenesis, osteogenesis and immigration of macrophages. J. Orthop. Res. 19, 531–538 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Toben, D. et al. Fracture healing is accelerated in the absence of the adaptive immune system. J. Bone Miner. Res. 26, 113–124 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Giannoudis, P. V., Einhorn, T. A. & Marsh, D. Fracture healing: the diamond concept. Injury 38 (Suppl. 4), S3–S6 (2007).

    Article  PubMed  Google Scholar 

  109. Gaston, M. S. & Simpson, A. H. Inhibition of fracture healing. J. Bone Joint Surg. Br. 89-B, 1553–1560 (2007).

    Article  Google Scholar 

  110. Dimitriou, R., Jones, E., McGonagle, D. & Giannoudis, P. V. Bone regeneration: current concepts and future directions. BMC Med. 9, 66 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Komatsu, D. E. & Warden, S. J. The control of fracture healing and its therapeutic targeting: improving upon nature. J. Cell. Biochem. 109, 302–311 (2010).

    CAS  PubMed  Google Scholar 

  112. Tosounidis, T., Kontakis, G., Nikolaou, V., Papathanassopoulos, A. & Giannoudis, P. V. Fracture healing and bone repair: an update. Trauma 11, 145–156 (2009).

    Article  Google Scholar 

  113. Keramaris, N. C., Calori, G. M., Nikolaou, V. S., Schemitsch, E. H. & Giannoudis, P. V. Fracture vascularity and bone healing: a systematic review of the role of VEGF. Injury 39 (Suppl. 2), S45–S57 (2008).

    Article  PubMed  Google Scholar 

  114. Graham, S. et al. Investigating the role of PDGF as a potential drug therapy in bone formation and fracture healing. Expert Opin. Investig. Drugs 18, 1633–1654 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Schmidmaier, G. et al. Improvement of fracture healing by systemic administration of growth hormone and local application of insulin-like growth factor-1 and transforming growth factor-β1. Bone 31, 165–172 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Nielsen, H. M., Bak, B., Jørgensen, P. H. & Andreassen, T. T. Growth hormone promotes healing of tibial fractures in the rat. Acta Orthop. Scand. 62, 244–247 (1991).

    Article  CAS  PubMed  Google Scholar 

  117. Kolbeck, S. et al. Homologous growth hormone accelerates bone healing--a biomechanical and histological study. Bone 33, 628–637 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Epari, D. R., Kassi, J. P., Schell, H. & Duda, G. N. Timely fracture-healing requires optimization of axial fixation stability. J. Bone Joint Surg. Am. 89, 1575–1585 (2007).

    PubMed  Google Scholar 

  119. Kaspar, K. et al. Angle stable locking reduces interfragmentary movements and promotes healing after unreamed nailing. Study of a displaced osteotomy model in sheep tibiae. J. Bone Joint Surg. Am. 87, 2028–2037 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Röntgen, V. et al. Fracture healing in mice under controlled rigid and flexible conditions using an adjustable external fixator. J. Orthop. Res. 28, 1456–1462 (2010).

    Article  PubMed  Google Scholar 

  121. Bashardoust Tajali, S., Houghton, P., Macdermid, J. C. & Grewal, R. Effects of low-intensity pulsed ultrasound therapy on fracture healing: a systematic review and meta-analysis. Am. J. Phys. Med. Rehabil. http://dx.doi.org/10.1097/PHM.0b013e31822419ba.

  122. Li, X. et al. Dickkopf-1 regulates bone formation in young growing rodents and upon traumatic injury. J. Bone Miner. Res. 26, 2610–2621 (2011).

    Article  CAS  PubMed  Google Scholar 

  123. Li, C. et al. Increased callus mass and enhanced strength during fracture healing in mice lacking the sclerostin gene. Bone 49, 1178–1185 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Xie, C. et al. Rescue of impaired fracture healing in Cox-2−/− mice via activation of prostaglandin E2 receptor subtype 4. Am. J. Pathol. 175, 772–785 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Delgado-Martínez, A. D., Martínez, M. E., Carrascal, M. T., Rodríguez-Avial, M. & Munuera, L. Effect of 25-OH-vitamin D on fracture healing in elderly rats. J. Orthop. Res. 16, 650–653 (1998).

    Article  PubMed  Google Scholar 

  126. Turk, C. et al. Promotion of fracture healing by vitamin E in rats. J. Int. Med. Res. 32, 507–512 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Sarisözen, B., Durak, K., Dinçer, G. & Bilgen, O. F. The effects of vitamins E and C on fracture healing in rats. J. Int. Med. Res. 30, 309–313 (2002).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all stages of the preparation of this manuscript.

Corresponding author

Correspondence to Lutz Claes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Claes, L., Recknagel, S. & Ignatius, A. Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol 8, 133–143 (2012). https://doi.org/10.1038/nrrheum.2012.1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2012.1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing