Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Using genetics to deliver personalized SLE therapy—a realistic prospect?

Abstract

Staggering advances have been made in our understanding of the genetic basis of human systemic lupus erythematosus (SLE), but has this been sufficient to fulfill early predictions that we could use genetics to provide personalized healthcare? Our current understanding of the genetic etiology of SLE indicates a strong underlying genetic predisposition, mediated by multiple gene variants. Compared with other complex genetic diseases, the disease risk imparted by many of these variants is strong. We argue that, for SLE, this particular combination of genetic effects means that the personalized prediction of disease onset or manifestation is certainly a realistic possibility, although further large-scale genetic studies will be required before this becomes a reality. We speculate that, in the future, genetic information could help guide targeted therapeutic intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Discriminative accuracy of a genetic profile based on genes with varying ORs and risk allele frequencies.14
Figure 2: Whole-genome analysis power calculations.

Similar content being viewed by others

References

  1. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  Google Scholar 

  2. Bell, J. The new genetics in clinical practice. BMJ 316, 618–620 (1998).

    Article  CAS  Google Scholar 

  3. Hochberg, M. C. The application of genetic epidemiology to systemic lupus erythematosus. J. Rheumatol. 14, 867–869 (1987).

    CAS  PubMed  Google Scholar 

  4. Gateva, V. et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat. Genet. 41, 1228–1233 (2009).

    Article  CAS  Google Scholar 

  5. Graham, R. R. et al. Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nat. Genet. 40, 1059–1061 (2008).

    Article  CAS  Google Scholar 

  6. Harley, J. B. et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat. Genet. 40, 204–210 (2008).

    Article  CAS  Google Scholar 

  7. Hom, G. et al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N. Engl. J. Med 358, 900–909 (2008).

    Article  CAS  Google Scholar 

  8. Rhodes, B. & Vyse, T. J. The genetics of SLE: an update in the light of genome-wide association studies. Rheumatology (Oxford) 47, 1603–1611 (2008).

    Article  CAS  Google Scholar 

  9. Rioux, J. D. et al. Mapping of multiple susceptibility variants within the MHC region for 7 immune-mediated diseases. Proc. Natl Acad. Sci. USA 106, 18680–18685 (2009).

    Article  CAS  Google Scholar 

  10. Sigurdsson, S. et al. Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am. J. Hum. Genet. 76, 528–537 (2005).

    Article  CAS  Google Scholar 

  11. Remmers, E. F. et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N. Engl. J. Med. 357, 977–986 (2007).

    Article  CAS  Google Scholar 

  12. Thompson, I. M. et al. Operating characteristics of prostate-specific antigen in men with an initial PSA level of 3.0 ng/ml or lower. JAMA 294, 66–70 (2005).

    CAS  PubMed  Google Scholar 

  13. Dejaco, C. et al. Diagnostic value of antibodies against a modified citrullinated vimentin in rheumatoid arthritis. Arthritis Res. Ther. 8, R119 (2006).

    Article  Google Scholar 

  14. Janssens, A. C. et al. Predictive testing for complex diseases using multiple genes: fact or fiction? Genet. Med. 8, 395–400 (2006).

    Article  Google Scholar 

  15. Janssens, A. C. et al. The impact of genotype frequencies on the clinical validity of genomic profiling for predicting common chronic diseases. Genet. Med. 9, 528–535 (2007).

    Article  Google Scholar 

  16. Bertoli, A. M. & Alarcon, G. S. in Systemic Lupus Erythematosus (eds Tsokos, G. C., Gordon, C. & Smolen, J. S.) 1–18 (Mosby, Philadelphia, 2007).

    Google Scholar 

  17. Tsao, B. P. et al. Familiality and co-occurrence of clinical features of systemic lupus erythematosus. Arthritis Rheum. 46, 2678–2685 (2002).

    Article  Google Scholar 

  18. Wang, W. Y., Barratt, B. J., Clayton, D. G. & Todd, J. A. Genome-wide association studies: theoretical and practical concerns. Nat. Rev. Genet. 6, 109–118 (2005).

    Article  CAS  Google Scholar 

  19. Tan, E. M. et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 25, 1271–1277 (1982).

    Article  CAS  Google Scholar 

  20. Arbuckle, M. R. et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N. Engl. J. Med. 349, 1526–1533 (2003).

    Article  CAS  Google Scholar 

  21. Hunnangkul, S. et al. Familial clustering of non-nuclear autoantibodies and C3 and C4 complement components in systemic lupus erythematosus. Arthritis Rheum. 58, 1116–1124 (2008).

    Article  Google Scholar 

  22. Kim-Howard, X. et al. ITGAM coding variant (rs1143679) influences the risk of renal disease, discoid rash, and immunologic manifestations in lupus patients with European ancestry. Ann. Rheum. Dis. doi:10.1136/ard.2009.120543.

  23. Yang, W. et al. ITGAM is associated with disease susceptibility and renal nephritis of systemic lupus erythematosus in Hong Kong Chinese and Thai. Hum. Mol. Genet. 18, 2063–2070 (2009).

    Article  Google Scholar 

  24. Taylor, K. E. et al. Specificity of the STAT4 genetic association for severe disease manifestations of systemic lupus erythematosus. PLoS Genet. 4, e1000084 (2008).

    Article  Google Scholar 

  25. Chung, S. A. et al. European population substructure is associated with mucocutaneous manifestations and autoantibody production in systemic lupus erythematosus. Arthritis Rheum. 60, 2448–2456 (2009).

    Article  Google Scholar 

  26. Richman, I. B. et al. European population substructure correlates with systemic lupus erythematosus endophenotypes in North Americans of European descent. Genes Immun. doi: 10.1038/gene.2009.80.

  27. Graham, R. R., Hom, G., Ortmann, W. & Behrens, T. W. Review of recent genome-wide association scans in lupus. J. Intern. Med. 265, 680–688 (2009).

    Article  CAS  Google Scholar 

  28. Moser, K. L., Kelly, J. A., Lessard, C. J. & Harley, J. B. Recent insights into the genetic basis of systemic lupus erythematosus. Genes Immun. 10, 373–379 (2009).

    Article  CAS  Google Scholar 

  29. Aringer, M. & Crow, M. K. A bridge between interferon-alpha and tumor necrosis factor in lupus. J. Rheumatol. 35, 1473–1476 (2008).

    CAS  PubMed  Google Scholar 

  30. Aringer, M. et al. Adverse events and efficacy of TNF-alpha blockade with infliximab in patients with systemic lupus erythematosus: long-term follow-up of 13 patients. Rheumatology (Oxford) 48, 1451–1454 (2009).

    Article  CAS  Google Scholar 

  31. Favas, C. & Isenberg, D. A. B-cell-depletion therapy in SLE—what are the current prospects for its acceptance? Nat. Rev. Rheumatol. 5, 711–716 (2009).

    Article  CAS  Google Scholar 

  32. Yates, C. R. et al. Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann. Intern. Med. 126, 608–614 (1997).

    Article  CAS  Google Scholar 

  33. Betonico, G. N. et al. Influence of UDP-glucuronosyltransferase polymorphisms on mycophenolate mofetil-induced side effects in kidney transplant patients. Transplant. Proc. 40, 708–710 (2008).

    Article  CAS  Google Scholar 

  34. Betonico, G. N., Abudd-Filho, M., Goloni-Bertollo, E. M. & Pavarino-Bertelli, E. Pharmacogenetics of mycophenolate mofetil: a promising different approach to tailoring immunosuppression? J. Nephrol. 21, 503–509 (2008).

    CAS  PubMed  Google Scholar 

  35. Ranganathan, P. An update on methotrexate pharmacogenetics in rheumatoid arthritis. Pharmacogenomics 9, 439–451 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Vyse.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rhodes, B., Vyse, T. Using genetics to deliver personalized SLE therapy—a realistic prospect?. Nat Rev Rheumatol 6, 373–377 (2010). https://doi.org/10.1038/nrrheum.2010.67

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2010.67

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing