Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cytokines as therapeutic targets in SLE

Abstract

Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease involving most immune cells. Studies in both experimental animal models of lupus and patients with SLE have revealed a number of cytokine pathways that are important in the disease process. Among these are B-cell activating factor, which promotes B-cell survival and autoantibody production, interferon-α, which acts as an immune adjuvant, and tumor necrosis factor, which contributes to organ inflammation. This knowledge, in combination with the successful use of anti-TNF treatment in rheumatoid arthritis, has spurred the development of several biologic agents targeting different cytokines or their receptors in SLE. Consequently, many trials of anticytokine therapies for SLE are underway. Although most of these trials are small or in early phases, the results of some large studies have also been reported. In this Review, we discuss the rationale for anticytokine therapies in SLE and review agents currently in use, and those being developed and tested experimentally. We present the results from published trials and discuss the tentative conclusions that can be drawn regarding the efficacy of the new agents. Finally, we provide suggestions for the future of treatment for SLE, including new therapeutic strategies.

Key Points

  • Many cytokine pathways of importance in the pathogenesis of systemic lupus erythematosus (SLE) have been identified and clinical trials of biologic agents targeting a number of these are underway

  • The clinical efficacy of belimumab, a human monoclonal antibody that binds B lymphocyte stimulator, has been demonstrated in two phase III studies

  • Monoclonal antibodies against tumor necrosis factor, interferon-α, interleukin-6 and interferon-γ are in early-phase trials, and there are several other potential cytokine targets for SLE therapy

  • Owing to the heterogeneous nature of SLE, the precise cytokine target will probably differ between individual patients and could also vary according to disease stage

  • New and improved biomarkers are needed in order to optimize anticytokine therapy for established disease and also to prevent disease exacerbation

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cytokines involved in the SLE disease process.
Figure 2: Expression of BAFF, APRIL and their receptors during B-cell differentiation.
Figure 3: The role of IFN-α in the stimulation of the autoimmune process in SLE.

Similar content being viewed by others

References

  1. Rahman, A. & Isenberg, D. A. Systemic lupus erythematosus. N. Engl. J. Med. 358, 929–939 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Manzi, S. et al. Age-specific incidence rates of myocardial infarction and angina in women with systemic lupus erythematosus: comparison with the Framingham Study. Am. J. Epidemiol. 145, 408–415 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Graham, R. R., Hom, G., Ortmann, W. & Behrens, T. W. Review of recent genome-wide association scans in lupus. J. Intern. Med. 265, 680–688 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Moser, K. L., Kelly, J. A., Lessard, C. J. & Harley, J. B. Recent insights into the genetic basis of systemic lupus erythematosus. Genes Immun. 10, 373–379 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Clarke, A. & Vyse, T. J. Genetics of rheumatic disease. Arthritis Res. Ther. 11, 248 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Niewold, T. B. et al. Association of the IRF5 risk haplotype with high serum interferon-α activity in systemic lupus erythematosus patients. Arthritis Rheum. 58, 2481–2487 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kariuki, S. N. et al. Cutting edge: autoimmune disease risk variant of STAT4 confers increased sensitivity to IFN-α in lupus patients in vivo. J. Immunol. 182, 34–38 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Vereecke, L., Beyaert, R. & van Loo, G. The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends Immunol. 30, 383–391 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Groom, J. R. et al. BAFF and MyD88 signals promote a lupuslike disease independent of T cells. J. Exp. Med. 204, 1959–1971 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang, J. et al. Cutting edge: a role for B lymphocyte stimulator in systemic lupus erythematosus. J. Immunol. 166, 6–10 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Roschke, V. et al. BLyS and APRIL form biologically active heterotrimers that are expressed in patients with systemic immune-based rheumatic diseases. J. Immunol. 169, 4314–4321 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Mackay, F. & Schneider, P. Cracking the BAFF code. Nat. Rev. Immunol. 9, 491–502 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Castigli, E. et al. TACI and BAFF-R mediate isotype switching in B cells. J. Exp. Med. 201, 35–39 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Avery, D. T. et al. BAFF selectively enhances the survival of plasmablasts generated from human memory B cells. J. Clin. Invest. 112, 286–297 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, X. et al. BAFF supports human B cell differentiation in the lymphoid follicles through distinct receptors. Int. Immunol. 17, 779–788 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Wallace, D. J. et al. A phase II, randomized, double-blind, placebo-controlled, dose-ranging study of belimumab in patients with active systemic lupus erythematosus. Arthritis Rheum. 61, 1168–1178 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Furie, R. A. et al. Novel evidence-based systemic lupus erythematosus responder index. Arthritis Rheum. 61, 1143–1151 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Navarra, S. et al. Belimumab, a BLyS-specific inhibitor, reduced disease activity, flares, and prednisone use in patients with active SLE: efficacy and safety results from the phase 3 BLISS-52 study. Presented at the American College of Rheumatology 2009 Annual Scientific Meeting (2009).

  19. GlaxoSmithKline. GlaxoSmithKline and Human Genome Sciences announce positive results in second of two phase 3 trials of Benlysta in systemic lupus erythematosus [online], (2009).

  20. Dall'Era, M. et al. Reduced B lymphocyte and immunoglobulin levels after atacicept treatment in patients with systemic lupus erythematosus: results of a multicenter, phase Ib, double-blind, placebo-controlled, dose-escalating trial. Arthritis Rheum. 56, 4142–4150 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Tak, P. P. et al. Atacicept in patients with rheumatoid arthritis: results of a multicenter, phase Ib, double-blind, placebo-controlled, dose-escalating, single- and repeated-dose study. Arthritis Rheum. 58, 61–72 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Studnicka-Benke, A., Steiner, G., Petera, P. & Smolen, J. S. Tumour necrosis factor alpha and its soluble receptors parallel clinical disease and autoimmune activity in systemic lupus erythematosus. Br. J. Rheumatol. 35, 1067–1074 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Malide, D., Russo, P. & Bendayan, M. Presence of tumor necrosis factor alpha and interleukin-6 in renal mesangial cells of lupus nephritis patients. Hum. Pathol. 26, 558–564 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Aringer, M. & Smolen, J. S. The role of tumor necrosis factor-alpha in systemic lupus erythematosus. Arthritis Res. Ther. 10, 202 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vassalli, P. The pathophysiology of tumor necrosis factors. Annu. Rev. Immunol. 10, 411–452 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. McDevitt, H., Munson, S., Ettinger, R. & Wu, A. Multiple roles for tumor necrosis factor-α and lymphotoxin α/β in immunity and autoimmunity. Arthritis Res. 4 (Suppl. 3), S141–S152 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Båve, U., Vallin, H., Alm, G. V. & Rönnblom, L. Activation of natural interferon-α producing cells by apoptotic U937 cells combined with lupus IgG and its regulation by cytokines. J. Autoimmun. 17, 71–80 (2001).

    Article  PubMed  Google Scholar 

  28. Ramos-Casals, M. et al. Autoimmune diseases induced by TNF-targeted therapies: analysis of 233 cases. Medicine (Baltimore) 86, 242–251 (2007).

    Article  Google Scholar 

  29. Aringer, M. et al. Adverse events and efficacy of TNF-α blockade with infliximab in patients with systemic lupus erythematosus: long-term follow-up of 13 patients. Rheumatology (Oxford) 48, 1451–1454 (2009).

    Article  CAS  Google Scholar 

  30. Ytterberg, S. R. & Schnitzer, T. J. Serum interferon levels in patients with systemic lupus erythematosus. Arthritis Rheum. 25, 401–406 (1982).

    Article  CAS  PubMed  Google Scholar 

  31. Bengtsson, A. et al. Activation of type I interferon system in systemic lupus erythematosus correlates with disease activity but not antiretroviral antibodies. Lupus 9, 664–671 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Rönnblom, L. E., Alm, G. V. & Öberg, K. E. Possible induction of systemic lupus erythematosus by interferon-α treatment in a patient with a malignant carcinoid tumour. J. Intern. Med. 227, 207–210 (1990).

    Article  PubMed  Google Scholar 

  33. Bennett, L. et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. 197, 711–723 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Baechler, E. C. et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl Acad. Sci. USA 100, 2610–2615 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Crow, M. K. & Wohlgemuth, J. Microarray analysis of gene expression in lupus. Arthritis Res. Ther. 5, 279–287 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Peterson, K. S. et al. Characterization of heterogeneity in the molecular pathogenesis of lupus nephritis from transcriptional profiles of laser-captured glomeruli. J. Clin. Invest. 113, 1722–1733 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Theofilopoulos, A. N., Baccala, R., Beutler, B. & Kono, D. H. Type I interferons (α/β) in immunity and autoimmunity. Ann. Rev. Immunol. 23, 307–336 (2005).

    Article  CAS  Google Scholar 

  38. Baccala, R., Hoebe, K., Kono, D. H., Beutler, B. & Theofilopoulos, A. N. TLR-dependent and TLR-independent pathways of type I interferon induction in systemic autoimmunity. Nat. Med. 13, 543–551 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Santiago-Raber, M. L. et al. Type-I interferon receptor deficiency reduces lupus-like disease in NZB mice. J. Exp. Med. 197, 777–788 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Braun, D., Geraldes, P. & Demengeot, J. Type I interferon controls the onset and severity of autoimmune manifestations in lpr mice. J. Autoimmun. 20, 15–25 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Wallace, D. J. et al. MEDI-545, an anti-interferon alpha monoclonal antibody, shows evidence of clinical activity in systemic lupus erythematosus [abstract 1315]. Arthritis Rheum. 56 (Suppl.), S526–S527 (2007).

    Google Scholar 

  42. Yao, Y. et al. Neutralization of interferon-α/β-inducible genes and downstream effect in a phase I trial of an anti-interferon-α monoclonal antibody in systemic lupus erythematosus. Arthritis Rheum. 60, 1785–1796 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. McBride, J. M. et al. Dose-dependent modulation of interferon regulated genes with administration of single and repeat doses of rontalizumab in a phase I, placebo controlled, double blind, dose escalation study in SLE [abstract 2072]. Arthritis Rheum. 60 (Suppl.), S775–S776 (2009).

    Google Scholar 

  44. Kishimoto, T. Interleukin-6: discovery of a pleiotropic cytokine. Arthritis Res. Ther. 8 (Suppl. 2), S2 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Smolen, J. S. et al. Effect of interleukin-6 receptor inhibition with tocilizumab in patients with rheumatoid arthritis (OPTION study): a double-blind, placebo-controlled, randomised trial. Lancet 371, 987–997 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Illei, G. G. et al. Tocilizumab in systemic lupus erythematosus: Data on safety, preliminary efficacy, and impact on circulating plasma cells from an open-label phase I dosage-escalation study. Arthritis Rheum. 62, 542–552 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. al-Janadi, M., al-Balla, S., al-Dalaan, A. & Raziuddin, S. Cytokine profile in systemic lupus erythematosus, rheumatoid arthritis, and other rheumatic diseases. J. Clin. Immunol. 13, 58–67 (1993).

    Article  CAS  PubMed  Google Scholar 

  48. Akahoshi, M. et al. Th1/Th2 balance of peripheral T helper cells in systemic lupus erythematosus. Arthritis Rheum. 42, 1644–1648 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Uhm, W. S. et al. Cytokine balance in kidney tissue from lupus nephritis patients. Rheumatology (Oxford) 42, 935–938 (2003).

    Article  CAS  Google Scholar 

  50. Min, D. J. et al. Decreased production of interleukin-12 and interferon-gamma is associated with renal involvement in systemic lupus erythematosus. Scand. J. Rheumatol. 30, 159–163 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Kirou, K. A. et al. Coordinate overexpression of interferon-α-induced genes in systemic lupus erythematosus. Arthritis Rheum. 50, 3958–3967 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Jacob, C. O., van der Meide, P. H. & McDevitt, H. O. In vivo treatment of (NZB × NZW)F1 lupus-like nephritis with monoclonal antibody to gamma interferon. J. Exp. Med. 166, 798–803 (1987).

    Article  CAS  PubMed  Google Scholar 

  53. Haas, C., Ryffel, B. & Le Hir, M. IFN-γ receptor deletion prevents autoantibody production and glomerulonephritis in lupus-prone (NZB × NZW)F1 mice. J. Immunol. 160, 3713–3718 (1998).

    CAS  PubMed  Google Scholar 

  54. Hu, X. & Ivashkiv, L. B. Cross-regulation of signaling pathways by interferon-γ: implications for immune responses and autoimmune diseases. Immunity 31, 539–550 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schroder, K., Hertzog, P. J., Ravasi, T. & Hume, D. A. Interferon-γ: an overview of signals, mechanisms and functions. J. Leukoc. Biol. 75, 163–189 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Harigai, M. et al. Excessive production of IFN-γ in patients with systemic lupus erythematosus and its contribution to induction of B lymphocyte stimulator/B cell-activating factor/TNF ligand superfamily-13B. J. Immunol. 181, 2211–2219 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Dinarello, C. A. Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol. 27, 519–550 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Sturfelt, G., Roux-Lombard, P., Wollheim, F. A. & Dayer, J. M. Low levels of interleukin-1 receptor antagonist coincide with kidney involvement in systemic lupus erythematosus. Br. J. Rheumatol. 36, 1283–1289 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Tucci, M. et al. Glomerular accumulation of plasmacytoid dendritic cells in active lupus nephritis: role of interleukin-18. Arthritis Rheum. 58, 251–262 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Ostendorf, B. et al. Preliminary results of safety and efficacy of the interleukin 1 receptor antagonist anakinra in patients with severe lupus arthritis. Ann. Rheum. Dis. 64, 630–633 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Moosig, F., Zeuner, R., Renk, C. & Schroder, J. O. IL-1RA in refractory systemic lupus erythematosus. Lupus 13, 605–606 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Park, Y. B. et al. Elevated interleukin-10 levels correlated with disease activity in systemic lupus erythematosus. Clin. Exp. Rheumatol. 16, 283–288 (1998).

    CAS  PubMed  Google Scholar 

  63. Llorente, L. et al. Role of interleukin 10 in the B lymphocyte hyperactivity and autoantibody production of human systemic lupus erythematosus. J. Exp. Med. 181, 839–844 (1995).

    Article  CAS  PubMed  Google Scholar 

  64. Mosser, D. M. & Zhang, X. Interleukin-10: new perspectives on an old cytokine. Immunol. Rev. 226, 205–218 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Llorente, L. et al. Clinical and biologic effects of anti-interleukin-10 monoclonal antibody administration in systemic lupus erythematosus. Arthritis Rheum. 43, 1790–1800 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Yang, J. et al. TH17 and natural TREG cell population dynamics in systemic lupus erythematosus. Arthritis Rheum. 60, 1472–1483 (2009).

    Article  PubMed  Google Scholar 

  67. Ouyang, W., Kolls, J. K. & Zheng, Y. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 28, 454–467 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wong, C. K. et al. Elevated production of B cell chemokine CXCL13 is correlated with systemic lupus erythematosus disease activity. J. Clin. Immunol. 30, 45–52 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Sawalha, A. H. et al. Genetic association of interleukin-21 polymorphisms with systemic lupus erythematosus. Ann. Rheum. Dis. 67, 458–461 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Vinuesa, C. G. et al. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 435, 452–458 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Bubier, J. A. et al. A critical role for IL-21 receptor signaling in the pathogenesis of systemic lupus erythematosus in BXSB-Yaa mice. Proc. Natl Acad. Sci. USA 106, 1518–1523 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Rochman, Y., Spolski, R. & Leonard, W. J. New insights into the regulation of T cells by γc family cytokines. Nat. Rev. Immunol. 9, 480–490 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Strengell, M., Julkunen, I. & Matikainen, S. IFN-α regulates IL-21 and IL-21R expression in human NK and T cells. J. Leukoc. Biol. 76, 416–422 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Bertsias, G., Gordon, C. & Boumpas, D. T. Clinical trials in systemic lupus erythematosus (SLE): lessons from the past as we proceed to the future—the EULAR recommendations for the management of SLE and the use of end-points in clinical trials. Lupus 17, 437–442 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Gordon, C. et al. EULAR points to consider for conducting clinical trials in systemic lupus erythematosus. Ann. Rheum. Dis. 68, 470–476 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Zagury, D. et al. IFNα kinoid vaccine-induced neutralizing antibodies prevent clinical manifestations in a lupus flare murine model. Proc. Natl Acad. Sci. USA 106, 5294–5299 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hu, N., Long, H., Zhao, M., Yin, H. & Lu, Q. Aberrant expression pattern of histone acetylation modifiers and mitigation of lupus by SIRT1-siRNA in MRL/lpr mice. Scand. J. Rheumatol. 38, 464–471 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. St Clair, E. W. Novel targeted therapies for autoimmunity. Curr. Opin. Immunol. 21, 648–657 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sigurdsson, S. et al. Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am. J. Hum. Gen. 76, 528–537 (2005).

    Article  CAS  Google Scholar 

  80. Sigurdsson, S. et al. A risk haplotype of STAT4 for systemic lupus erythematosus is over-expressed, correlates with anti-dsDNA and shows additive effects with two risk alleles of IRF5. Hum. Mol. Genet. 17, 2868–2876 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jacob, C. O. et al. Identification of IRAK1 as a risk gene with critical role in the pathogenesis of systemic lupus erythematosus. Proc. Natl Acad. Sci. USA 106, 6256–6261 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Graham, R. R. et al. Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nat. Genet. 40, 1059–1061 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Harley, J. B. et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat. Genet. 40, 204–210 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gateva, V. et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat. Genet. 41, 1228–1233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kim, K. et al. Interferon-gamma gene polymorphisms associated with susceptibility to systemic lupus erythematosus. Ann. Rheum. Dis. doi:10.1136/ard.2009.117572.

  86. Webb, R. et al. A polymorphism within IL21R confers risk for systemic lupus erythematosus. Arthritis Rheum. 60, 2402–2407 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by The Alliance for Lupus Research, the Swedish Research Council, the Dana Foundation, the Swedish Rheumatism Association, the King Gustaf V 80th Birthday Foundation, the Söderbergs Foundation, COMBINE, the Leap for Lupus Foundation and the NIH. The authors thank Jeffrey Ledbetter and Gunnar Alm for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Rönnblom.

Ethics declarations

Competing interests

L. Ronnblom has acted as a consultant for Active Biotech Research Inc., Medimmune Inc., Neovacs and Novo Nordisk A/S, and has and has participated in a clinical trial sponsored by Active Biotech. K. B. Elkon has received research grants from Hoffman La Roche, Merck Serono International S.A. (an affiliate of Merck KGaA, Darmstadt, Germany) and Zymogenetics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rönnblom, L., Elkon, K. Cytokines as therapeutic targets in SLE. Nat Rev Rheumatol 6, 339–347 (2010). https://doi.org/10.1038/nrrheum.2010.64

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2010.64

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing