Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mesenchymal stem cells: innovative therapeutic tools for rheumatic diseases

Abstract

Mesenchymal stem cells (MSCs), or multipotent mesenchymal stromal cells as they are also known, have been identified in bone marrow as well as in other tissues of the joint, including adipose, synovium, periosteum, perichondrium, and cartilage. These cells are characterized by their phenotype and their ability to differentiate into three lineages: chondrocytes, osteoblasts and adipocytes. Importantly, MSCs also potently modulate immune responses, exhibit healing capacities, improve angiogenesis and prevent fibrosis. These properties might be explained at least in part by the trophic effects of MSCs through the secretion of a number of cytokines and growth factors. However, the mechanisms involved in the differentiation potential of MSCs, and their immunomodulatory and paracrine properties, are currently being extensively studied. These unique properties of MSCs confer on them the potential to be used for therapeutic applications in rheumatic diseases, including rheumatoid arthritis, osteoarthritis, genetic bone and cartilage disorders as well as bone metastasis.

Key Points

  • In addition to their differentiation potential, mesenchymal stem cells (MSCs) exhibit immunosuppressive activity, as shown by their ability to inhibit the proliferation and function of immune cells

  • The immunosuppressive effect of MSCs is mediated by soluble factors

  • Another important feature of MSCs is their capacity to stimulate resident cells or to attract cells via a paracrine mode of action

  • The usefulness of MSCs for bone and cartilage repair has been well documented in various experimental models

  • The therapeutic benefit of MSCs for osteoarthritis, osteogenesis imperfecta and graft-versus-host disease is under evaluation in humans

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of the interactions between MSCs and cells of the immune system.
Figure 2: Principal therapeutic applications of MSCs for rheumatic and autoimmune diseases.

Similar content being viewed by others

References

  1. Djouad, F., Mrugala, D., Noël, D. & Jorgensen, C. Engineered mesenchymal stem cells for cartilage repair. Regen. Med. 1, 529–537 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315–317 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Pittenger, M., Vanguri, P., Simonetti, D. & Young, R. Adult mesenchymal stem cells: potential for muscle and tendon regeneration and use in gene therapy. J. Musculoskelet. Neuronal Interact. 2, 309–320 (2002).

    CAS  PubMed  Google Scholar 

  4. Makino, S. et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J. Clin. Invest. 103, 697–705 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tropel, P. et al. Functional neuronal differentiation of bone marrow-derived mesenchymal stem cells. Stem Cells 24, 2868–2876 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Bhatia, R. & Hare, J. M. Mesenchymal stem cells: future source for reparative medicine. Congest. Heart Fail. 11, 87–91 (2005).

    Article  PubMed  Google Scholar 

  7. Vinatier, C., Mrugala, D., Jorgensen, C., Guicheux, J. & Noël, D. Cartilage engineering: a critical combination of cells, biomaterials and biofactors. Trends Biotech. 27, 307–314 (2009).

    Article  CAS  Google Scholar 

  8. Alsalameh, S., Amin, R., Gemba, T. & Lotz, M. Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum. 50, 1522–1532 (2004).

    Article  PubMed  Google Scholar 

  9. Djouad, F. et al. Transcriptional profiles discriminate bone marrow-derived and synovium-derived mesenchymal stem cells. Arthritis Res. Ther. 7, R1304–R1315 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. De Bari, C., Dell'Accio, F. & Luyten, F. P. Human periosteum-derived cells maintain phenotypic stability and chondrogenic potential throughout expansion regardless of donor age. Arthritis Rheum. 44, 85–95 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Gimble, J. M., Katz, A. J. & Bunnell, B. A. Adipose-derived stem cells for regenerative medicine. Circ. Res. 100, 1249–1260 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fritz, V. et al. Antitumoral activity and osteogenic potential of mesenchymal stem cells expressing the urokinase-type plasminogen antagonist amino-terminal fragment in a murine model of osteolytic tumor. Stem Cells 26, 2981–2990 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Planat-Benard, V. et al. Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 109, 656–663 (2004).

    Article  PubMed  Google Scholar 

  14. Mazo, M. et al. Transplantation of adipose derived stromal cells is associated with functional improvement in a rat model of chronic myocardial infarction. Eur. J. Heart Fail. 10, 454–462 (2008).

    Article  PubMed  Google Scholar 

  15. Rehman, J. et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109, 1292–1298 (2004).

    Article  PubMed  Google Scholar 

  16. Croft, A. P. & Przyborski, S. A. Formation of neurons by non-neural adult stem cells: potential mechanism implicates an artifact of growth in culture. Stem Cells 24, 1841–1851 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Hiraoka, K., Grogan, S., Olee, T. & Lotz, M. Mesenchymal progenitor cells in adult human articular cartilage. Biorheology 43, 447–454 (2006).

    PubMed  Google Scholar 

  18. Hattori, S., Oxford, C. & Reddi, A. H. Identification of superficial zone articular chondrocyte stem/progenitor cells. Biochem. Biophys. Res. Commun. 358, 99–103 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fickert, S., Fiedler, J. & Brenner, R. E. Identification, quantification and isolation of mesenchymal progenitor cells from osteoarthritic synovium by fluorescence automated cell sorting. Osteoarthritis Cartilage 11, 790–800 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Jones, S., Horwood, N., Cope, A. & Dazzi, F. The antiproliferative effect of mesenchymal stem cells is a fundamental property shared by all stromal cells. J. Immunol. 179, 2824–2831 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Nemeth, K. et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E2-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat. Med. 15, 42–49 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Groh, M. E., Maitra, B., Szekely, E. & Koc, O. N. Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive T cells. Exp. Hematol. 33, 928–934 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Le Blanc, K., Tammik, L., Sundberg, B., Haynesworth, S. E. & Ringden, O. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand. J. Immunol. 57, 11–20 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Ren, G. et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2, 141–150 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Spaggiari, G. M. et al. Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2, 3-dioxygenase and prostaglandin E2. Blood 111, 1327–1333 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Noël, D., Djouad, F., Bouffi, C., Mrugala, D. & Jorgensen, C. Multipotent mesenchymal stromal cells and immune tolerance. Leuk. Lymphoma 48, 1283–1289 (2007).

    Article  PubMed  CAS  Google Scholar 

  27. Gieseke, F. et al. Human multipotent mesenchymal stromal cells inhibit proliferation of PBMCs independently of IFNgammaR1 signaling and IDO expression. Blood 110, 2197–2200 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Djouad, F. et al. Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells 25, 2025–2032 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Sato, K. et al. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 109, 228–234 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Aggarwal, S. & Pittenger, M. F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105, 1815–1822 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Jarvinen, L. et al. Lung resident mesenchymal stem cells isolated from human lung allografts inhibit T cell proliferation via a soluble mediator. J. Immunol. 181, 4389–4396 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Rasmusson, I. Immune modulation by mesenchymal stem cells. Exp. Cell Res. 312, 2169–2179 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Chabannes, D. et al. A role for heme oxygenase-1 in the immunosuppressive effect of adult rat and human mesenchymal stem cells. Blood 110, 3691–3694 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Nasef, A. et al. Leukemia inhibitory factor: role in human mesenchymal stem cells mediated immunosuppression. Cell. Immunol. 253, 16–22 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Selmani, Z. et al. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells 26, 212–222 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Djouad, F. et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 102, 3837–3844 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Augello, A., Tasso, R., Negrini, S. M., Cancedda, R. & Pennesi, G. Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis Rheum. 56, 1175–1186 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Bartholomew, A. et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp. Hematol. 30, 42–48 (2002).

    Article  PubMed  Google Scholar 

  39. Glennie, S., Soeiro, I., Dyson, P. J., Lam, E. W. & Dazzi, F. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105, 2821–2827 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Zappia, E. et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106, 1755–1761 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Rasmusson, I., Ringden, O., Sundberg, B. & Le Blanc, K. Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation 76, 1208–1213 (2003).

    Article  PubMed  Google Scholar 

  42. Karlsson, H. et al. Mesenchymal stem cells exert differential effects on alloantigen and virus-specific T-cell responses. Blood 112, 532–541 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Maccario, R. et al. Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica 90, 516–525 (2005).

    CAS  PubMed  Google Scholar 

  44. Prevosto, C., Zancolli, M., Canevali, P., Zocchi, M. R. & Poggi, A. Generation of CD4+ or CD8+ regulatory T cells upon mesenchymal stem cell-lymphocyte interaction. Haematologica 92, 881–888 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Jiang, X. X. et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105, 4120–4126 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Nauta, A. J., Kruisselbrink, A. B., Lurvink, E., Willemze, R. & Fibbe, W. E. Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells. J. Immunol. 177, 2080–2087 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Spaggiari, G. M., Capobianco, A., Becchetti, S., Mingari, M. C. & Moretta, L. Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 107, 1484–1490 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Sotiropoulou, P. A., Perez, S. A., Gritzapis, A. D., Baxevanis, C. N. & Papamichail, M. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 24, 74–85 (2006).

    Article  PubMed  Google Scholar 

  49. Corcione, A. et al. Human mesenchymal stem cells modulate B-cell functions. Blood 107, 367–372 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Rasmusson, I., Le Blanc, K., Sundberg, B. & Ringden, O. Mesenchymal stem cells stimulate antibody secretion in human B cells. Scand. J. Immunol. 65, 336–343 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Raffaghello, L. et al. Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem Cells 26, 151–162 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Boumaza, I. et al. Autologous bone marrow-derived rat mesenchymal stem cells promote PDX-1 and insulin expression in the islets, alter T cell cytokine pattern and preserve regulatory T cells in the periphery and induce sustained normoglycemia. J. Autoimmun. 32, 33–44 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Casiraghi, F. et al. Pretransplant infusion of mesenchymal stem cells prolongs the survival of a semiallogeneic heart transplant through the generation of regulatory T cells. J. Immunol. 181, 3933–3946 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Caplan, A. I. & Dennis, J. E. Mesenchymal stem cells as trophic mediators. J. Cell. Biochem. 98, 1076–1084 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Ringden, O. & Le Blanc, K. Allogeneic hematopoietic stem cell transplantation: state of the art and new perspectives. APMIS 113, 813–830 (2005).

    Article  PubMed  Google Scholar 

  56. Takahashi, N., Udagawa, N. & Suda, T. A new member of tumor necrosis factor ligand family, ODF/OPGL/TRANCE/RANKL, regulates osteoclast differentiation and function. Biochem. Biophys. Res. Commun. 256, 449–455 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Tang, Y. L. et al. Autologous mesenchymal stem cell transplantation induce VEGF and neovascularization in ischemic myocardium. Regul. Pept. 117, 3–10 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Nagaya, N. et al. Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis. Am. J. Physiol. Heart Circ. Physiol. 287, H2670–H2676 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Li, Y. et al. Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells. Glia 49, 407–417 (2005).

    Article  PubMed  Google Scholar 

  60. Wynn, T. A. Cellular and molecular mechanisms of fibrosis. J. Pathol. 214, 199–210 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li, L. et al. Mesenchymal stem cell transplantation attenuates cardiac fibrosis associated with isoproterenol-induced global heart failure. Transpl. Int. 21, 1181–1189 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Ohnishi, S., Sumiyoshi, H., Kitamura, S. & Nagaya, N. Mesenchymal stem cells attenuate cardiac fibroblast proliferation and collagen synthesis through paracrine actions. FEBS Lett. 581, 3961–3966 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Lane, J. M. et al. Bone marrow and recombinant human bone morphogenetic protein-2 in osseous repair. Clin. Orthop. Relat. Res. 361, 216–227 (1999).

    Article  Google Scholar 

  64. Hou, R. et al. Comparative study between coral–mesenchymal stem cells–rhBMP-2 composite and auto-bone-graft in rabbit critical-sized cranial defect model. J. Biomed. Mater. Res. A 80, 85–93 (2007).

    Article  PubMed  CAS  Google Scholar 

  65. Hernigou, P. et al. Percutaneous autologous bone-marrow grafting for nonunions. Surgical technique. J. Bone Joint Surg. Am. 88 (Suppl. 1 Pt 2), 322–327 (2006).

    Article  PubMed  Google Scholar 

  66. Chow, J. C., Hantes, M. E., Houle, J. B. & Zalavras, C. G. Arthroscopic autogenous osteochondral transplantation for treating knee cartilage defects: a 2- to 5-year follow-up study. Arthroscopy 20, 681–690 (2004).

    Article  PubMed  Google Scholar 

  67. Chu, C. R., Convery, F. R., Akeson, W. H., Meyers, M. & Amiel, D. Articular cartilage transplantation. Clinical results in the knee. Clin. Orthop. Relat. Dis. 360, 159–168 (1999).

    Article  Google Scholar 

  68. Stone, K. R., Walgenbach, A. W., Freyer, A., Turek, T. J. & Speer, D. P. Articular cartilage paste grafting to full-thickness articular cartilage knee joint lesions: a 2- to 12-year follow-up. Arthroscopy 22, 291–299 (2006).

    Article  PubMed  Google Scholar 

  69. Mrugala, D. et al. Phenotypic and functional characterisation of ovine mesenchymal stem cells: application to a cartilage defect model. Ann. Rheum. Dis. 67, 288–295 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Li, W. J. et al. Evaluation of articular cartilage repair using biodegradable nanofibrous scaffolds in a swine model: a pilot study. J. Tissue Eng. Regen. Med. 3, 1–10 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Murphy, J. M., Fink, D. J., Hunziker, E. B. & Barry, F. P. Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum. 48, 3464–3474 (2003).

    Article  PubMed  Google Scholar 

  72. Le Blanc, K. et al. Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation 79, 1607–1614 (2005).

    Article  PubMed  Google Scholar 

  73. Horwitz, E. M. et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat. Med. 5, 309–313 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Ringden, O. et al. Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation 81, 1390–1397 (2006).

    Article  PubMed  Google Scholar 

  75. Lee, R. H. et al. Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc. Natl Acad. Sci. USA 103, 17438–17443 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Djouad, F. et al. Reversal of the immunosuppressive properties of mesenchymal stem cells by tumor necrosis factor alpha in collagen-induced arthritis. Arthritis Rheum. 52, 1595–1603 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Zheng, Z. H., Li, X. Y., Ding, J., Jia, J. F. & Zhu, P. Allogeneic mesenchymal stem cell and mesenchymal stem cell-differentiated chondrocyte suppress the responses of type II collagen-reactive T cells in rheumatoid arthritis. Rheumatology (Oxford) 47, 22–30 (2008).

    Article  CAS  Google Scholar 

  78. Studeny, M. et al. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J. Natl Cancer Inst. 96, 1593–1603 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Chen, X. C. et al. Prophylaxis against carcinogenesis in three kinds of unestablished tumor models via IL12-gene-engineered MSCs. Carcinogenesis 27, 2434–2441 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Mishra, P. J., Mishra, P. J., Glod, J. W. & Banerjee, D. Mesenchymal stem cells: flip side of the coin. Cancer Res. 69, 1255–1258 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Noël, D. et al. Cell specific differences between human adipose-derived and mesenchymal-stromal cells despite similar differentiation potentials. Exp. Cell Res. 314, 1575–1584 (2008).

    Article  PubMed  CAS  Google Scholar 

  82. Di Cesare, P. E., Frenkel, S. R., Carlson, C. S., Fang, C. & Liu, C. Regional gene therapy for full-thickness articular cartilage lesions using naked DNA with a collagen matrix. J. Orthop. Res. 24, 1118–1127 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Kuo, A. C. et al. Microfracture and bone morphogenetic protein 7 (BMP-7) synergistically stimulate articular cartilage repair. Osteoarthritis Cartilage 14, 1126–1135 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Kuroda, R. et al. Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells. Arthritis Rheum. 54, 433–442 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Garrison, K. R. et al. Clinical effectiveness and cost-effectiveness of bone morphogenetic proteins in the non-healing of fractures and spinal fusion: a systematic review. Health Technol. Assess. 11, 1–150, iii–iv (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D. Noël and C. Jorgensen contributed equally to this article. This work is supported by the Inserm Institute, the University of Montpellier I, The French National Research Agency, Fondation de l'Avenir pour la Recherche Médicale Appliquée and the Fondation pour la Recherche Médicale. The authors thank Jean-Louis Pasquier for the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danièle Noël.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Djouad, F., Bouffi, C., Ghannam, S. et al. Mesenchymal stem cells: innovative therapeutic tools for rheumatic diseases. Nat Rev Rheumatol 5, 392–399 (2009). https://doi.org/10.1038/nrrheum.2009.104

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2009.104

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing