Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Treatment of rheumatoid arthritis: state of the art 2009

Abstract

Few, if any, areas of medical therapeutics have witnessed such dramatic changes as those that have occurred in the therapy of rheumatoid arthritis (RA) during the past two decades. Improvements in clinical trials methodologies, the introduction of no fewer than nine biologic agents with distinct mechanisms of action, and the development of better strategies for the use of such agents have all contributed to the new age in RA therapeutics. Here, we review these developments and attempt to describe the current landscape of RA therapy in terms of available treatments, agreed-upon principles of RA management, as well as some important controversies in this field. Despite the great pace at which developments are moving, a treatment-free remission for patients with RA remains an elusive goal and unmet medical needs remain. The quest for better therapies for this potentially devastating disease is still as important as ever; research in this exciting area is ongoing, and it is reasonable to hope that, during the next decade, developments will lead to improved, rationally designed, targeted therapies for RA.

Key Points

  • Rheumatoid arthritis (RA) therapy has changed dramatically over the past 20 years

  • The early use of DMARDs, the use of DMARD combinations, and the use of biologic agents in patients who fail to respond to DMARDs are all part of the modern approach to treating RA

  • Strategies involving the use of low-dose glucocorticoids, as well as more-aggressive glucocorticoid regimens, have been effective

  • Despite these successes, there remains a considerable unmet need in RA therapy

  • Many new therapies and strategies are currently being investigated, raising hopes for an even better future for patients with this disease

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic showing the simplified pathophysiologic pathways in rheumatoid arthritis and their main clinical consequences.
Figure 2: A schematic showing the simplified pathophysiologic pathways in rheumatoid arthritis, and where these processes can be interfered with by currently available biologic agents.
Figure 3: A schematic showing the simplified pathophysiologic pathways in rheumatoid arthritis and indicating where some of the new approaches currently being investigated might interfere with these processes.

Similar content being viewed by others

References

  1. Schenkier, S. & Golbus, J. Treatment of rheumatoid arthritis. New thoughts on the classic pyramid approach. Postgrad. Med. 91, 285–286 (1992).

    Article  CAS  Google Scholar 

  2. Wilske, K. R. & Healey, L. A. Challenging the therapeutic pyramid: a new look at treatment strategies for rheumatoid arthritis. J. Rheumatol. 25, 4–7 (1990).

    CAS  Google Scholar 

  3. Wilske, K. R. Inverting the therapeutic pyramid: observations and recommendations on new directions in rheumatoid arthritis therapy based on the author's experience. Semin. Arthritis Rheum. 23 (2 Suppl. 1), 11–18 (1993).

    Article  CAS  Google Scholar 

  4. Weinblatt, M. E. et al. Efficacy of low-dose methotrexate in rheumatoid arthritis. N. Engl. J. Med. 312, 818–822 (1985).

    CAS  Google Scholar 

  5. Weinblatt, M. E. et al. Methotrexate in rheumatoid arthritis: effects on disease activity in a multicenter prospective study. J. Rheumatol. 18, 334–338 (1991).

    CAS  PubMed  Google Scholar 

  6. Kremer, J. M. et al. Methotrexate for rheumatoid arthritis. Suggested guidelines for monitoring liver toxicity. American College of Rheumatology. Arthritis Rheum. 37, 316–328 (1994).

    Article  CAS  Google Scholar 

  7. Weinblatt, M. E. et al. Low-dose methotrexate compared with auranofin in adult rheumatoid arthritis. A thirty-six-week, double-blind trial. Arthritis Rheum. 33, 330–338 (1990).

    Article  CAS  Google Scholar 

  8. Weinblatt, M. E. et al. Methotrexate in rheumatoid arthritis. A five-year prospective multicenter study. Arthritis Rheum. 37, 1492–1498 (1994).

    Article  CAS  Google Scholar 

  9. Weinblatt, M. E. Toxicity of low dose methotrexate in rheumatoid arthritis. J. Rheumatol. 12 (Suppl.), 35–39 (1985).

    Google Scholar 

  10. O'Dell, J. R. et al. Treatment of rheumatoid arthritis with methotrexate alone, sulfasalazine and hydroxychloroquine, or a combination of all three medications. N. Engl. J. Med. 334, 1287–1291 (1996).

    Article  CAS  Google Scholar 

  11. Tugwell, P. et al. Combination therapy with cyclosporine and methotrexate in severe rheumatoid arthritis. The Methotrexate–Cyclosporine Combination Study Group. N. Engl. J. Med. 333, 137–141 (1995).

    Article  CAS  Google Scholar 

  12. Willkens, R. F., Sharp, J. T., Stablein, D., Marks, C. & Wortmann, R. Comparison of azathioprine, methotrexate, and the combination of the two in the treatment of rheumatoid arthritis. A forty-eight-week controlled clinical trial with radiologic outcome assessment. Arthritis Rheum. 38, 1799–1806 (1995).

    Article  CAS  Google Scholar 

  13. Felson, D. T. et al. American College of Rheumatology. Preliminary definition of improvement in rheumatoid arthritis. Arthritis Rheum. 38, 727–735 (1995).

    Article  CAS  Google Scholar 

  14. van Gestel, A. M., Haagsma, C. J. & van Riel, P. L. Validation of rheumatoid arthritis improvement criteria that include simplified joint counts. Arthritis Rheum. 41, 1845–1850 (1998).

    Article  CAS  Google Scholar 

  15. Larsen, A. How to apply Larsen score in evaluating radiographs of rheumatoid arthritis in long-term studies. J. Rheumatol. 22, 1974–1975 (1995).

    CAS  PubMed  Google Scholar 

  16. Fries, J. F. The hierarchy of quality-of-life assessment, the Health Assessment Questionnaire (HAQ), and issues mandating development of a toxicity index. Control Clin. Trials 12 (4 Suppl.), S106–S117 (1991).

    Article  Google Scholar 

  17. Ramey, D. R., Raynauld, J. P. & Fries, J. F. The health assessment questionnaire 1992: status and review. Arthritis Care Res. 5, 119–129 (1992).

    Article  CAS  Google Scholar 

  18. Fries, J. F., Spitz, P. W. & Young, D. Y. The dimensions of health outcomes: the health assessment questionnaire, disability and pain scales. J. Rheumatol. 9, 789–793 (1982).

    CAS  PubMed  Google Scholar 

  19. Wolfe, F. et al. The clinical value of the Stanford Health Assessment Questionnaire Functional Disability Index in patients with rheumatoid arthritis. J. Rheumatol. 15, 1480–1488 (1988).

    CAS  PubMed  Google Scholar 

  20. Harris, E. D. Jr, Emkey, R. D., Nichols, J. E. & Newberg, A. Low dose prednisone therapy in rheumatoid arthritis: a double blind study. J. Rheumatol. 10, 713–721 (1983).

    PubMed  Google Scholar 

  21. Svensson, B. et al. Low-dose prednisolone in addition to the initial disease-modifying antirheumatic drug in patients with early active rheumatoid arthritis reduces joint destruction and increases the remission rate: a two-year randomized trial. Arthritis Rheum. 52, 3360–3370 (2005).

    Article  CAS  Google Scholar 

  22. Wassenberg, S., Rau, R., Steinfeld, P. & Zeidler, H. Very low-dose prednisolone in early rheumatoid arthritis retards radiographic progression over two years: a multicenter, double-blind, placebo-controlled trial. Arthritis Rheum. 52, 3371–3380 (2005).

    Article  CAS  Google Scholar 

  23. Kirwan, J. R. The effect of glucocorticoids on joint destruction in rheumatoid arthritis. The Arthritis and Rheumatism Council Low-Dose Glucocorticoid Study Group. N. Engl. J. Med. 333, 142–146 (1995).

    Article  CAS  Google Scholar 

  24. Boers, M. et al. Randomised comparison of combined step-down prednisolone, methotrexate and sulphasalazine with sulphasalazine alone in early rheumatoid arthritis. Lancet 350, 309–318 (1997).

    Article  CAS  Google Scholar 

  25. Landewe, R. B. et al. COBRA combination therapy in patients with early rheumatoid arthritis: long-term structural benefits of a brief intervention. Arthritis Rheum. 46, 347–356 (2002).

    Article  CAS  Google Scholar 

  26. Mottonen, T. et al. Comparison of combination therapy with single-drug therapy in early rheumatoid arthritis: a randomised trial. FIN-RACo trial group. Lancet 353, 1568–1573 (1999).

    Article  CAS  Google Scholar 

  27. Grigor, C. et al. Effect of a treatment strategy of tight control for rheumatoid arthritis (the TICORA study): a single-blind randomised controlled trial. Lancet 364, 263–269 (2004).

    Article  Google Scholar 

  28. Verstappen, S. M. et al. Intensive treatment with methotrexate in early rheumatoid arthritis: aiming for remission. Computer Assisted Management in Early Rheumatoid Arthritis (CAMERA, an open-label strategy trial). Ann. Rheum. Dis. 66, 1443–1449 (2007).

    Article  CAS  Google Scholar 

  29. Goekoop-Ruiterman, Y. P. et al. Clinical and radiographic outcomes of four different treatment strategies in patients with early rheumatoid arthritis (the BeSt study): a randomized, controlled trial. Arthritis Rheum. 52, 3381–3390 (2005).

    Article  CAS  Google Scholar 

  30. van der Bijl, A. E. et al. Infliximab and methotrexate as induction therapy in patients with early rheumatoid arthritis. Arthritis Rheum. 56, 2129–2134 (2007).

    Article  CAS  Google Scholar 

  31. van Vollenhoven, R. F. et al. When methotrexate fails in early rheumatoid arthritis, the addition of infliximab is more effective than the addition of sulfasalazine and hydroxychloroquine: 1-year results of the Swefot clinical trial. Lancet (in press).

  32. Montesinos, M. C. et al. The anti-inflammatory mechanism of methotrexate depends on extracellular conversion of adenine nucleotides to adenosine by ecto-5′-nucleotidase: findings in a study of ecto-5′-nucleotidase gene-deficient mice. Arthritis Rheum. 56, 1440–1445 (2007).

    Article  CAS  Google Scholar 

  33. O'Dell, J. R. et al. Treatment of rheumatoid arthritis with methotrexate and hydroxychloroquine, methotrexate and sulfasalazine, or a combination of the three medications: results of a two-year, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 46, 1164–1170 (2002).

    Article  CAS  Google Scholar 

  34. Cohen, S. et al. Two-year, blinded, randomized, controlled trial of treatment of active rheumatoid arthritis with leflunomide compared with methotrexate. Utilization of Leflunomide in the Treatment of Rheumatoid Arthritis Trial Investigator Group. Arthritis Rheum. 44, 1984–1992 (2001).

    Article  CAS  Google Scholar 

  35. Strand, V. et al. Treatment of active rheumatoid arthritis with leflunomide compared with placebo and methotrexate. Leflunomide Rheumatoid Arthritis Investigators Group. Arch. Intern. Med. 159, 2542–2550 (1999).

    Article  CAS  Google Scholar 

  36. van der Heijde, D., Kalden, J., Scott, D., Smolen, J. & Strand, V. Long term evaluation of radiographic disease progression in a subset of patients with rheumatoid arthritis treated with leflunomide beyond 2 years. Ann. Rheum. Dis. 63, 737–739 (2004).

    Article  CAS  Google Scholar 

  37. Weinblatt, M. E. et al. Pharmacokinetics, safety, and efficacy of combination treatment with methotrexate and leflunomide in patients with active rheumatoid arthritis. Arthritis Rheum. 42, 1322–1328 (1999).

    Article  CAS  Google Scholar 

  38. O'Dell, J. R. et al. Treatment of early rheumatoid arthritis with minocycline or placebo: results of a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 40, 842–848 (1997).

    Article  CAS  Google Scholar 

  39. Brennan, F. M., Chantry, D., Jackson, A., Maini, R. & Feldmann, M. Inhibitory effect of TNF alpha antibodies on synovial cell interleukin-1 production in rheumatoid arthritis. Lancet 2, 244–247 (1989).

    Article  CAS  Google Scholar 

  40. Elliott, M. J. et al. Treatment of rheumatoid arthritis with chimeric monoclonal antibodies to tumor necrosis factor alpha. Arthritis Rheum. 36, 1681–1690 (1993).

    Article  CAS  Google Scholar 

  41. Weinblatt, M. E. et al. Adalimumab, a fully human anti-tumor necrosis factor alpha monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. Arthritis Rheum. 48, 35–45 (2003).

    Article  CAS  Google Scholar 

  42. Weinblatt, M. E. et al. A trial of etanercept, a recombinant tumor necrosis factor receptor:Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. N. Engl. J. Med. 340, 253–259 (1999).

    Article  CAS  Google Scholar 

  43. Lipsky, P. E. et al. Infliximab and methotrexate in the treatment of rheumatoid arthritis. Anti-Tumor Necrosis Factor Trial in Rheumatoid Arthritis with Concomitant Therapy Study Group. N. Engl. J. Med. 343, 1594–1602 (2000).

    Article  CAS  Google Scholar 

  44. St Clair, E. W. et al. Combination of infliximab and methotrexate therapy for early rheumatoid arthritis: a randomized, controlled trial. Arthritis Rheum. 50, 3432–3443 (2004).

    Article  CAS  Google Scholar 

  45. Breedveld, F. C. et al. The PREMIER study: a multicenter, randomized, double-blind clinical trial of combination therapy with adalimumab plus methotrexate versus methotrexate alone or adalimumab alone in patients with early, aggressive rheumatoid arthritis who had not had previous methotrexate treatment. Arthritis Rheum. 54, 26–37 (2006).

    Article  CAS  Google Scholar 

  46. Klareskog, L. et al. Therapeutic effect of the combination of etanercept and methotrexate compared with each treatment alone in patients with rheumatoid arthritis: double-blind randomised controlled trial. Lancet 363, 675–681 (2004).

    Article  CAS  Google Scholar 

  47. Emery, P. et al. Comparison of methotrexate monotherapy with a combination of methotrexate and etanercept in active, early, moderate to severe rheumatoid arthritis (COMET): a randomised, double-blind, parallel treatment trial. Lancet 372, 375–382 (2008).

    Article  CAS  Google Scholar 

  48. Jiang, Y. et al. A multicenter, double-blind, dose-ranging, randomized, placebo-controlled study of recombinant human interleukin-1 receptor antagonist in patients with rheumatoid arthritis: radiologic progression and correlation of Genant and Larsen scores. Arthritis Rheum. 43, 1001–1009 (2000).

    Article  CAS  Google Scholar 

  49. Lovell, D. J., Bowyer, S. L. & Solinger, A. M. Interleukin-1 blockade by anakinra improves clinical symptoms in patients with neonatal-onset multisystem inflammatory disease. Arthritis Rheum. 52, 1283–1286 (2005).

    Article  CAS  Google Scholar 

  50. Hawkins, P. N., Lachmann, H. J., Aganna, E. & McDermott, M. F. Spectrum of clinical features in Muckle–Wells syndrome and response to anakinra. Arthritis Rheum. 50, 607–612 (2004).

    Article  CAS  Google Scholar 

  51. Lequerre, T. et al. Interleukin-1 receptor antagonist (anakinra) treatment in patients with systemic-onset juvenile idiopathic arthritis or adult onset Still disease: preliminary experience in France. Ann. Rheum. Dis. 67, 302–308 (2008).

    Article  CAS  Google Scholar 

  52. Emery, P. et al. The efficacy and safety of rituximab in patients with active rheumatoid arthritis despite methotrexate treatment: results of a phase IIB randomized, double-blind, placebo-controlled, dose-ranging trial. Arthritis Rheum. 54, 1390–1400 (2006).

    Article  CAS  Google Scholar 

  53. Cohen, S. B. et al. Rituximab for rheumatoid arthritis refractory to anti-tumor necrosis factor therapy: results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at twenty-four weeks. Arthritis Rheum. 54, 2793–2806 (2006).

    Article  CAS  Google Scholar 

  54. Keystone, E. et al. Safety and efficacy of additional courses of rituximab in patients with active rheumatoid arthritis: an open-label extension analysis. Arthritis Rheum. 56, 3896–3908 (2007).

    Article  CAS  Google Scholar 

  55. Kremer, J. M. et al. Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N. Engl. J. Med. 349, 1907–1915 (2003).

    Article  CAS  Google Scholar 

  56. Genovese, M. C. et al. Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition. N Engl J. Med. 353, 1114–1123 (2005).

    Article  CAS  Google Scholar 

  57. Schiff, M. et al. Efficacy and safety of abatacept or infliximab vs placebo in ATTEST: a phase III, multi-centre, randomised, double-blind, placebo-controlled study in patients with rheumatoid arthritis and an inadequate response to methotrexate. Ann. Rheum. Dis. 67, 1096–1103 (2008).

    Article  CAS  Google Scholar 

  58. Emery, P. et al. IL-6 receptor inhibition with tocilizumab improves treatment outcomes in patients with rheumatoid arthritis refractory to anti-tumour necrosis factor biologicals: results from a 24-week multicentre randomised placebo-controlled trial. Ann. Rheum. Dis. 67, 1516–1523 (2008).

    Article  CAS  Google Scholar 

  59. Maini, R. N. et al. Double-blind randomized controlled clinical trial of the interleukin-6 receptor antagonist, tocilizumab, in European patients with rheumatoid arthritis who had an incomplete response to methotrexate. Arthritis Rheum. 54, 2817–2829 (2006).

    Article  CAS  Google Scholar 

  60. Allanore, Y., Kahan, A., Sellam, J., Ekindjian, O. G. & Borderie, D. Effects of repeated infliximab therapy on serum lipid profile in patients with refractory rheumatoid arthritis. Clin. Chim. Acta 365, 143–148 (2006).

    Article  CAS  Google Scholar 

  61. Lard, L. R. et al. Early versus delayed treatment in patients with recent-onset rheumatoid arthritis: comparison of two cohorts who received different treatment strategies. Am. J. Med. 111, 446–451 (2001).

    Article  CAS  Google Scholar 

  62. van Vollenhoven, R. How to dose infliximab in RA—new data on a serious issue. Ann. Rheum. Dis. 68, 1237–1239 (2009).

    Article  CAS  Google Scholar 

  63. Emery, P. et al. Guidelines for initiation of anti-tumor necrosis factor therapy in rheumatoid arthritis: similarities and differences across Europe. Ann. Rheum. Dis. 68, 456–459 (2009).

    Article  CAS  Google Scholar 

  64. van Vollenhoven, R., Harju, A., Brannemark, S. & Klareskog, L. Treatment with infliximab (Remicade) when etanercept (Enbrel) has failed or vice versa: data from the STURE registry showing that switching tumour necrosis factor alpha blockers can make sense. Ann. Rheum. Dis. 62, 1195–1198 (2003).

    Article  CAS  Google Scholar 

  65. van Vollenhoven, R. F. Switching between anti-tumour necrosis factors: trying to get a handle on a complex issue. Ann. Rheum. Dis. 66, 849–851 (2007).

    Article  CAS  Google Scholar 

  66. Westhovens, R. et al. Clinical efficacy and safety of abatacept in methotrexate-naive patients with early rheumatoid arthritis and poor prognostic factors. Ann. Rheum. Dis. doi:10.1136/ard.2008.101121.

  67. Tak, P. P. et al. Inhibition of joint damage and improved clinical outcomes with a combination of rituximab (RTX) and methotrexate (MTX) in patients (PTS) with early active rheumatoid arthritis (RA) who are naive to MTX: a randomised active comparator placebo-controlled trial. Presented at EULAR 2009, Annual Scientific Congress.

  68. Wessels, J. A. et al. A clinical pharmacogenetic model to predict the efficacy of methotrexate monotherapy in recent-onset rheumatoid arthritis. Arthritis Rheum. 56, 1765–1775 (2007).

    Article  CAS  Google Scholar 

  69. Smolen, J. S. et al. Golimumab in patients with active rheumatoid arthritis after treatment with tumour necrosis factor alpha inhibitors (GO-AFTER study): a multicentre, randomised, double-blind, placebo-controlled, phase III trial. Lancet 374, 210–221 (2009).

    Article  CAS  Google Scholar 

  70. Choi, Y., Arron, J. R. & Townsend, M. J. Promising bone-related therapeutic targets for rheumatoid arthritis. Nat. Rev. Rheumatol. 5, 543–548 (2009).

    Article  CAS  Google Scholar 

  71. Cornish, A. L., Campbell, I. K., McKenzie, B. S., Chatfield, S. & Wicks, I. P. G-CSF and GM-CSF as therapeutic targets in rheumatoid arthritis. Nat. Rev. Rheumatol. 5, 554–559 (2009).

    Article  CAS  Google Scholar 

  72. van den Berg, W. B. & Miossec, P. IL-17 as a future therapeutic target for rheumatoid arthritis. Nat. Rev. Rheumatol. 5, 549–553 (2009).

    Article  CAS  Google Scholar 

  73. Esensten, J. H., Wofsy, D. & Bluestone, J. A. Regulatory T cells as therapeutic targets in rheumatoid arthritis. Nat. Rev. Rheumatol. 5, 560–565 (2009).

    Article  CAS  Google Scholar 

  74. Tedder, T. F. CD19: a promising B cell target for rheumatoid arthritis. Nat. Rev. Rheumatol. 5, 572–577 (2009).

    Article  CAS  Google Scholar 

  75. Feldmann, M. & Taylor, P. C. Anti-TNF biologic agents: still the therapy of choice for rheumatoid arthritis. Nat. Rev. Rheumatol. 5, 578–582 (2009).

    Article  Google Scholar 

  76. Khan, S., Greenberg, J. & Bhardwaj, N. Dendritic cells as targets for therapy for rheumatoid arthritis. Nat. Rev. Rheumatol. 5, 566–571 (2009).

    Article  CAS  Google Scholar 

  77. Weyand, C. M., Fujii, H., Shao, L. & Goronzy, J. J. Rejuvenating the immune system in rheumatoid arthritis. Nat. Rev. Rheumatol. 5, 583–588 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D. Lie, University of California, irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald F. van Vollenhoven.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Vollenhoven, R. Treatment of rheumatoid arthritis: state of the art 2009. Nat Rev Rheumatol 5, 531–541 (2009). https://doi.org/10.1038/nrrheum.2009.182

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2009.182

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing