Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immune resolution mechanisms in inflammatory arthritis

Key Points

  • Acute inflammation resolves actively through the engagement of specific proresolving mediators and mechanisms

  • The effect of failed resolution in chronic inflammatory settings is markedly unappreciated

  • Novel technologies afford analytical definition of proresolving mediators in clinical samples, providing new opportunities for stratification and target identification

  • Therapeutic strategies based on the biology of resolution can guide the development of novel medicines for the clinical management of inflammatory arthritis

  • Resolution-based therapies might be less burdened by unwanted effects than existing therapies and would activate tissue-protective mechanisms within patients

Abstract

The past two decades have witnessed major advancements in the clinical management of inflammatory arthritis, with new treatment strategies in some cases providing a marked improvement in patient outcomes. However, it is widely accepted that current strategies do not provide the 'total therapeutic solution', in view of the proportion of patients who do not respond to therapy, the important incidence of adverse effects and the development of an immune response against antibodies or fusion proteins used therapeutically. Moreover, although some therapeutic approaches can effectively bring about an end to inflammation, mechanisms to promote the recovery and/or repair of damage are required. Harnessing the concepts and mechanisms of the resolution of inflammation is a new approach to the treatment of inflammatory pathologies; this approach could help address the unmet need for new therapeutic approaches that not only control but also revert the course of inflammatory rheumatic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dynamics of the inflammatory response.
Figure 2: Biosynthetic pathways leading to the production of specialized proresolving lipid mediators.

Similar content being viewed by others

References

  1. Serhan, C. N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 510, 92–101 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dalli, J. et al. Identification and actions of a novel third maresin conjugate in tissue regeneration: MCTR3. PLoS ONE 11, e0149319 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428–435 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Majno, G. Inflammation and infection: historic highlights. Monogr. Pathol. 1–17 (1982).

  5. Nourshargh, S. & Alon, R. Leukocyte migration into inflamed tissues. Immunity 41, 694–707 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Perretti, M. Endogenous mediators that inhibit the leukocyte–endothelium interaction. Trends Pharmacol. Sci. 18, 418–425 (1997).

    CAS  PubMed  Google Scholar 

  7. Willis, D., Moore, A. R., Frederick, R. & Willoughby, D. A. Heme oxygenase: a novel target for the modulation of the inflammatory response. Nat. Med. 2, 87–90 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Gilroy, D. W. et al. Inducible cyclooxygenase may have anti-inflammatory properties. Nat. Med. 5, 698–701 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Liu, Y. et al. Glucocorticoids promote nonphlogistic phagocytosis of apoptotic leukocytes. J. Immunol. 162, 3639–3646 (1999).

    CAS  PubMed  Google Scholar 

  10. Mitchell, S. et al. Lipoxins, aspirin-triggered epi-lipoxins, lipoxin stable analogues, and the resolution of inflammation: stimulation of macrophage phagocytosis of apoptotic neutrophils in vivo. J. Am. Soc. Nephrol. 13, 2497–2507 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. El Kebir, D., Gjorstrup, P. & Filep, J. G. Resolvin E1 promotes phagocytosis-induced neutrophil apoptosis and accelerates resolution of pulmonary inflammation. Proc. Natl Acad. Sci. USA 109, 14983–14988 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Serhan, C. N., Chiang, N. & Dalli, J. The resolution code of acute inflammation: novel pro-resolving lipid mediators in resolution. Semin. Immunol. 27, 200–215 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Buckley, C. D., Gilroy, D. W. & Serhan, C. N. Proresolving lipid mediators and mechanisms in the resolution of acute inflammation. Immunity 40, 315–327 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ortega-Gomez, A., Perretti, M. & Soehnlein, O. Resolution of inflammation: an integrated view. EMBO Mol. Med. 5, 661–674 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gilroy, D. & De Maeyer, R. New insights into the resolution of inflammation. Semin. Immunol. 27, 161–168 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Bertolotto, M. et al. Sulphasalazine accelerates apoptosis in neutrophils exposed to immune complex: role of caspase pathway. Clin. Exp. Pharmacol. Physiol. 36, 1132–1135 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Rossi, A. G. et al. Cyclin-dependent kinase inhibitors enhance the resolution of inflammation by promoting inflammatory cell apoptosis. Nat. Med. 12, 1056–1064 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Bannenberg, G. L. et al. Molecular circuits of resolution: formation and actions of resolvins and protectins. J. Immunol. 174, 4345–4355 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Damazo, A. S., Yona, S., Flower, R. J., Perretti, M. & Oliani, S. M. Spatial and temporal profiles for anti-inflammatory gene expression in leukocytes during a resolving model of peritonitis. J. Immunol. 176, 4410–4418 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Serhan, C. N., Hamberg, M. & Samuelsson, B. Lipoxins: novel series of biologically active compounds formed from arachidonic acid in human leukocytes. Proc. Natl Acad. Sci. USA 81, 5335–5339 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Romano, M. et al. Lipoxin synthase activity of human platelet 12-lipoxygenase. Biochem. J. 296, 127–133 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lu, Y., Hong, S., Tjonahen, E. & Serhan, C. N. Mediator-lipidomics: databases and search algorithms for PUFA-derived mediators. J. Lipid Res. 46, 790–802 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Dalli, J. & Serhan, C. N. Specific lipid mediator signatures of human phagocytes: microparticles stimulate macrophage efferocytosis and pro-resolving mediators. Blood 120, e60–e72 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Colas, R. A., Shinohara, M., Dalli, J., Chiang, N. & Serhan, C. N. Identification and signature profiles for pro-resolving and inflammatory lipid mediators in human tissue. Am. J. Physiol. Cell Physiol. 307, C39–C54 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Arnardottir, H., Orr, S. K., Dalli, J. & Serhan, C. N. Human milk proresolving mediators stimulate resolution of acute inflammation. Mucosal Immunol. 9, 757–766 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Sasaki, A. et al. Determination of ω-6 and ω-3 PUFA metabolites in human urine samples using UPLC/MS/MS. Anal. Bioanal. Chem. 407, 1625–1639 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Markworth, J. F. et al. Divergent shifts in lipid mediator profile following supplementation with n-3 docosapentaenoic acid and eicosapentaenoic acid. FASEB J. 30, 3714–3725 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Weiss, G. A. et al. High levels of anti-inflammatory and pro-resolving lipid mediators lipoxins and resolvins and declining docosahexaenoic acid levels in human milk during the first month of lactation. Lipids Health Dis. 12, 89 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Barden, A. E. et al. Specialised pro-resolving mediators of inflammation in inflammatory arthritis. Prostaglandins Leukot. Essent. Fatty Acids 107, 24–29 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Jones, M. L. et al. Maternal dietary omega-3 fatty acid intake increases resolvin and protectin levels in the rat placenta. J. Lipid Res. 54, 2247–2254 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Morita, M. et al. The lipid mediator protectin D1 inhibits influenza virus replication and improves severe influenza. Cell 153, 112–125 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Miles, E. A. & Calder, P. C. Influence of marine n-3 polyunsaturated fatty acids on immune function and a systematic review of their effects on clinical outcomes in rheumatoid arthritis. Br. J. Nutr. 107 (Suppl. 2), S171–S184 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Kronke, G. et al. 12/15-lipoxygenase counteracts inflammation and tissue damage in arthritis. J. Immunol. 183, 3383–3389 (2009).

    Article  PubMed  Google Scholar 

  34. Dufton, N. et al. Anti-inflammatory role of the murine formyl-peptide receptor 2: ligand-specific effects on leukocyte responses and experimental inflammation. J. Immunol. 184, 2611–2619 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Blaho, V. A., Zhang, Y., Hughes-Hanks, J. M. & Brown, C. R. 5-lipoxygenase-deficient mice infected with Borrelia burgdorferi develop persistent arthritis. J. Immunol. 186, 3076–3084 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Chan, M. M. & Moore, A. R. Resolution of inflammation in murine autoimmune arthritis is disrupted by cyclooxygenase-2 inhibition and restored by prostaglandin E2-mediated lipoxin A4 production. J. Immunol. 184, 6418–6426 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Gheorghe, K. R. et al. Expression of 5-lipoxygenase and 15-lipoxygenase in rheumatoid arthritis synovium and effects of intraarticular glucocorticoids. Arthritis Res. Ther. 11, R83 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chabane, N. et al. Human articular chondrocytes express 15-lipoxygenase-1 and -2: potential role in osteoarthritis. Arthritis Res. Ther. 11, R44 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hashimoto, A. et al. Antiinflammatory mediator lipoxin A4 and its receptor in synovitis of patients with rheumatoid arthritis. J. Rheumatol. 34, 2144–2153 (2007).

    CAS  PubMed  Google Scholar 

  40. Norling, L. V. et al. Proresolving and cartilage-protective actions of resolvin D1 in inflammatory arthritis. JCI Insight 1, e85922 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Giera, M. et al. Lipid and lipid mediator profiling of human synovial fluid in rheumatoid arthritis patients by means of LC-MS/MS. Biochim. Biophys. Acta 1821, 1415–1424 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lima-Garcia, J. F. et al. The precursor of resolvin D series and aspirin-triggered resolvin D1 display anti-hyperalgesic properties in adjuvant-induced arthritis in rats. Br. J. Pharmacol. 164, 278–293 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Borea, P. A., Gessi, S., Merighi, S. & Varani, K. Adenosine as a multi-signalling guardian angel in human diseases: when, where and how does it exert its protective effects? Trends Pharmacol. Sci. 37, 419–434 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Chan, E. S. & Cronstein, B. N. Methotrexate — how does it really work? Nat. Rev. Rheumatol. 6, 175–178 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Peres, R. S. et al. Low expression of CD39 on regulatory T cells as a biomarker for resistance to methotrexate therapy in rheumatoid arthritis. Proc. Natl Acad. Sci. USA 112, 2509–2514 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Siebert, S., Tsoukas, A., Robertson, J. & McInnes, I. Cytokines as therapeutic targets in rheumatoid arthritis and other inflammatory diseases. Pharmacol. Rev. 67, 280–309 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Norling, L. V. & Perretti, M. Control of myeloid cell trafficking in resolution. J. Innate Immun. 5, 367–376 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Flogel, U. et al. Selective activation of adenosine A2A receptors on immune cells by a CD73-dependent prodrug suppresses joint inflammation in experimental rheumatoid arthritis. Sci. Transl Med. 4, 146ra108 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Mediero, A. et al. Adenosine A2A receptor activation prevents wear particle-induced osteolysis. Sci. Transl Med. 4, 135ra65 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wallace, J. L., Ianaro, A., Flannigan, K. L. & Cirino, G. Gaseous mediators in resolution of inflammation. Semin. Immunol. 27, 227–233 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Ahluwalia, A. et al. Antiinflammatory activity of soluble guanylate cyclase: cGMP-dependent down-regulation of P-selectin expression and leukocyte recruitment. Proc. Natl Acad. Sci. USA 101, 1386–1391 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zanardo, R. C. et al. Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation. FASEB J. 20, 2118–2120 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Brancaleone, V., Mitidieri, E., Flower, R. J., Cirino, G. & Perretti, M. Annexin A1 mediates hydrogen sulfide properties in the control of inflammation. J. Pharmacol. Exp. Ther. 351, 96–104 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Kloesch, B., Liszt, M. & Broell, J. H2S transiently blocks IL-6 expression in rheumatoid arthritic fibroblast-like synoviocytes and deactivates p44/42 mitogen-activated protein kinase. Cell Biol. Int. 34, 477–484 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Burguera, E. F., Vela-Anero, A., Magalhaes, J., Meijide-Failde, R. & Blanco, F. J. Effect of hydrogen sulfide sources on inflammation and catabolic markers on interleukin 1β-stimulated human articular chondrocytes. Osteoarthritis Cartilage 22, 1026–1035 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Dief, A. E., Mostafa, D. K., Sharara, G. M. & Zeitoun, T. H. Hydrogen sulfide releasing naproxen offers better anti-inflammatory and chondroprotective effect relative to naproxen in a rat model of zymosan induced arthritis. Eur. Rev. Med. Pharmacol. Sci. 19, 1537–1546 (2015).

    CAS  PubMed  Google Scholar 

  57. Chiang, N. et al. Inhaled carbon monoxide accelerates resolution of inflammation via unique proresolving mediator-heme oxygenase-1 circuits. J. Immunol. 190, 6378–6388 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Shinohara, M. et al. Cell–cell interactions and bronchoconstrictor eicosanoid reduction with inhaled carbon monoxide and resolvin D1. Am. J. Physiol. Lung Cell. Mol. Physiol. 307, L746–L757 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Daoussis, D., Antonopoulos, I. & Andonopoulos, A. P. ACTH as a treatment for acute crystal-induced arthritis: update on clinical evidence and mechanisms of action. Semin. Arthritis Rheum. 43, 648–653 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Gutman, A. B. & Yu, T. F. Effects of adrenocorticotropic hormone (ACTH) in gout. Am. J. Med. 9, 24–30 (1950).

    Article  CAS  PubMed  Google Scholar 

  61. Hench, P. S. et al. The effect of a hormone of the adrenal cortex (17-hydroxy-11-dehydrocorticosterone; compound E) and of pituitary adrenocorticotropic hormone on rheumatoid arthritis. Proc. Staff Meet. Mayo Clin. 24, 181–197 (1949).

    CAS  PubMed  Google Scholar 

  62. Montero-Melendez, T. ACTH: The forgotten therapy. Semin. Immunol. 27, 216–226 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Bohm, M. & Grassel, S. Role of proopiomelanocortin-derived peptides and their receptors in the osteoarticular system: from basic to translational research. Endocr. Rev. 33, 623–651 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Getting, S. J., Christian, H. C., Flower, R. J. & Perretti, M. Activation of melanocortin type 3 receptor as a molecular mechanism for adrenocorticotropic hormone efficacy in gouty arthritis. Arthritis Rheum. 46, 2765–2775 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Montero-Melendez, T. et al. Association between periodontal disease and inflammatory arthritis reveals modulatory functions by melanocortin receptor type 3. Am. J. Pathol. 184, 2333–2341 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Patel, H. B. et al. Anti-inflammatory and antiosteoclastogenesis properties of endogenous melanocortin receptor type 3 in experimental arthritis. FASEB J. 24, 4835–4843 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Grassel, S. et al. The melanocortin system in articular chondrocytes: melanocortin receptors, pro-opiomelanocortin, precursor proteases, and a regulatory effect of α-melanocyte-stimulating hormone on proinflammatory cytokines and extracellular matrix components. Arthritis Rheum. 60, 3017–3027 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Kaneva, M. K. et al. Melanocortin peptides protect chondrocytes from mechanically induced cartilage injury. Biochem. Pharmacol. 92, 336–347 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Muffley, L. A., Zhu, K. Q., Engrav, L. H., Gibran, N. S. & Hocking, A. M. Spatial and temporal localization of the melanocortin 1 receptor and its ligand α-melanocyte-stimulating hormone during cutaneous wound repair. J. Histochem. Cytochem. 59, 278–288 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Perretti, M. & D'Acquisto, F. Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nat. Rev. Immunol. 9, 62–70 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Drechsler, M. et al. Annexin A1 counteracts chemokine-induced arterial myeloid cell recruitment. Circ. Res. 116, 827–835 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Montero-Melendez, T., Dalli, J. & Perretti, M. Gene expression signature-based approach identifies a pro-resolving mechanism of action for histone deacetylase inhibitors. Cell Death Differ. 20, 567–575 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Locatelli, I. et al. Endogenous annexin A1 is a novel protective determinant in nonalcoholic steatohepatitis in mice. Hepatology 60, 531–544 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Fredman, G. et al. Targeted nanoparticles containing the proresolving peptide Ac2-26 protect against advanced atherosclerosis in hypercholesterolemic mice. Sci. Transl Med. 7, 275ra20 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yang, Y. H. et al. Modulation of inflammation and response to dexamethasone by annexin 1 in antigen-induced arthritis. Arthritis Rheum. 50, 976–984 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Patel, H. B. et al. The impact of endogenous annexin A1 on glucocorticoid control of inflammatory arthritis. Ann. Rheum. Dis. 71, 1872–1880 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Sapolsky, R. M., Romero, L. M. & Munck, A. U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21, 55–89 (2000).

    CAS  PubMed  Google Scholar 

  78. Iqbal, A. J. et al. Endogenous galectin-1 and acute inflammation: emerging notion of a galectin-9 pro-resolving effect. Am. J. Pathol. 178, 1201–1209 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ilarregui, J. M. et al. Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10. Nat. Immunol. 10, 981–991 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Chiang, N. et al. Anesthetics impact the resolution of inflammation. PLoS ONE 3, e1879 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Thiemann, S., Man, J. H., Chang, M. H., Lee, B. & Baum, L. G. Galectin-1 regulates tissue exit of specific dendritic cell populations. J. Biol. Chem. 290, 22662–22677 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Forsman, H. et al. Galectin 3 aggravates joint inflammation and destruction in antigen-induced arthritis. Arthritis Rheum. 63, 445–454 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Arikawa, T. et al. Galectin-9 ameliorates immune complex-induced arthritis by regulating FcγR expression on macrophages. Clin. Immunol. 133, 382–392 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Rabinovich, G. A. et al. Recombinant galectin-1 and its genetic delivery suppress collagen-induced arthritis via T cell apoptosis. J. Exp. Med. 190, 385–398 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Iqbal, A. J. et al. Endogenous galectin-1 exerts tonic inhibition on experimental arthritis. J. Immunol. 191, 171–177 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Seki, M. et al. Beneficial effect of galectin 9 on rheumatoid arthritis by induction of apoptosis of synovial fibroblasts. Arthritis Rheum. 56, 3968–3976 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Seki, M. et al. Galectin-9 suppresses the generation of Th17, promotes the induction of regulatory T cells, and regulates experimental autoimmune arthritis. Clin. Immunol. 127, 78–88 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Naylor, A. J., Filer, A. & Buckley, C. D. The role of stromal cells in the persistence of chronic inflammation. Clin. Exp. Immunol. 171, 30–35 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Harjacek, M. et al. Expression of galectins-1 and -3 correlates with defective mononuclear cell apoptosis in patients with juvenile idiopathic arthritis. J. Rheumatol. 28, 1914–1922 (2001).

    CAS  PubMed  Google Scholar 

  90. Xibille-Friedmann, D., Bustos Rivera-Bahena, C., Rojas-Serrano, J., Burgos-Vargas, R. & Montiel-Hernandez, J. L. A decrease in galectin-1 (Gal-1) levels correlates with an increase in anti-Gal-1 antibodies at the synovial level in patients with rheumatoid arthritis. Scand. J. Rheumatol. 42, 102–107 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Nishi, N., Itoh, A., Shoji, H., Miyanaka, H. & Nakamura, T. Galectin-8 and galectin-9 are novel substrates for thrombin. Glycobiology 16, 15C–20C (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Schall, T. J. & Proudfoot, A. E. Overcoming hurdles in developing successful drugs targeting chemokine receptors. Nat. Rev. Immunol. 11, 355–363 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Wells, T. N., Power, C. A., Shaw, J. P. & Proudfoot, A. E. Chemokine blockers — therapeutics in the making? Trends Pharmacol. Sci. 27, 41–47 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Brancaleone, V. et al. A vasculo-protective circuit centered on lipoxin A4 and aspirin-triggered 15-epi-lipoxin A4 operative in murine microcirculation. Blood 122, 608–617 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Abdulnour, R. E. et al. Maresin 1 biosynthesis during platelet–neutrophil interactions is organ-protective. Proc. Natl Acad. Sci. USA 111, 16526–16531 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Souza, D. G. et al. The required role of endogenously produced lipoxin A4 and annexin-1 for the production of IL-10 and inflammatory hyporesponsiveness in mice. J. Immunol. 179, 8533–8543 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Chiang, N. et al. Infection regulates pro-resolving mediators that lower antibiotic requirements. Nature 484, 524–528 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Brancaleone, V. et al. Evidence for an anti-inflammatory loop centered on polymorphonuclear leukocyte formyl peptide receptor 2/lipoxin A4 receptor and operative in the inflamed microvasculature. J. Immunol. 186, 4905–4914 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Varani, K. et al. A2A and A3 adenosine receptor expression in rheumatoid arthritis: upregulation, inverse correlation with disease activity score and suppression of inflammatory cytokine and metalloproteinase release. Arthritis Res. Ther. 13, R197 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Perretti, M., Leroy, X., Bland, E. J. & Montero-Melendez, T. Resolution pharmacology: opportunities for therapeutic innovation in inflammation. Trends Pharmacol. Sci. 36, 737–755 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Morabito, L. et al. Methotrexate and sulfasalazine promote adenosine release by a mechanism that requires ecto-5′-nucleotidase-mediated conversion of adenine nucleotides. J. Clin. Invest. 101, 295–300 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Vago, J. P. et al. Proresolving actions of synthetic and natural protease inhibitors are mediated by annexin A1. J. Immunol. 196, 1922–1932 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Montero-Melendez, T. & Perretti, M. Connections in pharmacology: innovation serving translational medicine. Drug Discov. Today 19, 820–823 (2014).

    Article  PubMed  Google Scholar 

  104. Joosten, L. A. et al. Alpha-1-anti-trypsin-Fc fusion protein ameliorates gouty arthritis by reducing release and extracellular processing of IL-1β and by the induction of endogenous IL-1Ra. Ann. Rheum. Dis. 75, 1219–1227 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Orr, S. K., Colas, R. A., Dalli, J., Chiang, N. & Serhan, C. N. Proresolving actions of a new resolvin D1 analog mimetic qualifies as an immunoresolvent. Am. J. Physiol. Lung Cell. Mol. Physiol. 308, L904–L911 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Vessillier, S. et al. Molecular engineering of short half-life small peptides (VIP, alphaMSH and gamma(3)MSH) fused to latency-associated peptide results in improved anti-inflammatory therapeutics. Ann. Rheum. Dis. 71, 143–149 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Cooray, S. N. et al. Ligand-specific conformational change of the G-protein-coupled receptor ALX/FPR2 determines proresolving functional responses. Proc. Natl Acad. Sci. USA 110, 18232–18237 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Bozinovski, S. et al. Serum amyloid A opposes lipoxin A4 to mediate glucocorticoid refractory lung inflammation in chronic obstructive pulmonary disease. Proc. Natl Acad. Sci. USA 109, 935–940 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Montero-Melendez, T., Gobbetti, T., Cooray, S. N., Jonassen, T. E. & Perretti, M. Biased agonism as a novel strategy to harness the proresolving properties of melanocortin receptors without eliciting melanogenic effects. J. Immunol. 194, 3381–3388 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Yanez-Mo, M. et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 4, 27066 (2015).

    Article  PubMed  Google Scholar 

  111. Dalli, J. et al. Annexin 1 mediates the rapid anti-inflammatory effects of neutrophil-derived microparticles. Blood 112, 2512–2519 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Gasser, O. & Schifferli, J. A. Activated polymorphonuclear neutrophils disseminate anti-inflammatory microparticles by ectocytosis. Blood 104, 2543–2548 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Norling, L. V. et al. Cutting edge: humanized nano-proresolving medicines mimic inflammation-resolution and enhance wound healing. J. Immunol. 186, 5543–5547 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Van Dyke, T. E. et al. Proresolving nanomedicines activate bone regeneration in periodontitis. J. Dent. Res. 94, 148–156 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Headland, S. E. et al. Neutrophil-derived microvesicles enter cartilage and protect the joint in inflammatory arthritis. Sci. Transl Med. 7, 315ra190 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Leoni, G. et al. Annexin A1-containing extracellular vesicles and polymeric nanoparticles promote epithelial wound repair. J. Clin. Invest. 125, 1215–1227 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Dalli, J., Chiang, N. & Serhan, C. N. Elucidation of novel 13-series resolvins that increase with atorvastatin and clear infections. Nat. Med. 21, 1071–1075 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lee, C. R. & Zeldin, D. C. Resolvin infectious inflammation by targeting the host response. N. Engl. J. Med. 373, 2183–2185 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wallace, J. L. & Wang, R. Hydrogen sulfide-based therapeutics: exploiting a unique but ubiquitous gasotransmitter. Nat. Rev. Drug Discov. 14, 329–345 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Robertson, J., Peters, M. J., McInnes, I. B. & Sattar, N. Changes in lipid levels with inflammation and therapy in RA: a maturing paradigm. Nat. Rev. Rheumatol. 9, 513–523 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Gabay, C. et al. Comparison of lipid and lipid-associated cardiovascular risk marker changes after treatment with tocilizumab or adalimumab in patients with rheumatoid arthritis. Ann. Rheum. Dis. 75, 1806–1812 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. Dalli, J. et al. Microparticle alpha-2-macroglobulin enhances pro-resolving responses and promotes survival in sepsis. EMBO Mol. Med. 6, 27–42 (2014).

    Article  CAS  PubMed  Google Scholar 

  123. Dalli, J. C. et al. Human sepsis eicosanoid and proresolving lipid mediator temporal profiles: correlations with survival and clinical outcome. Crit. Care Med. http://dx.doi.org/10.1097/CCM.0000000000002014 (2016).

  124. Nadkarni, S. et al. Investigational analysis reveals a potential role for neutrophils in giant-cell arteritis disease progression. Circ. Res. 114, 242–248 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. D'Acquisto, F. et al. Annexin-1 modulates T-cell activation and differentiation. Blood 109, 1095–1102 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Newson, J. et al. Resolution of acute inflammation bridges the gap between innate and adaptive immunity. Blood 124, 1748–1764 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Norling, L. V., Sampaio, A. L., Cooper, D. & Perretti, M. Inhibitory control of endothelial galectin-1 on in vitro and in vivo lymphocyte trafficking. FASEB J. 22, 682–690 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. He, J. & Baum, L. G. Endothelial cell expression of galectin-1 induced by prostate cancer cells inhibits T-cell transendothelial migration. Lab. Invest. 86, 578–590 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Cooper, D., Norling, L. V. & Perretti, M. Novel insights into the inhibitory effects of galectin-1 on neutrophil recruitment under flow. J. Leukoc. Biol. 83, 1459–1466 (2008).

    Article  CAS  PubMed  Google Scholar 

  130. Dias-Baruffi, M. et al. Dimeric galectin-1 induces surface exposure of phosphatidylserine and phagocytic recognition of leukocytes without inducing apoptosis. J. Biol. Chem. 278, 41282–41293 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Cedeno-Laurent, F. et al. Development of a nascent galectin-1 chimeric molecule for studying the role of leukocyte galectin-1 ligands and immune disease modulation. J. Immunol. 185, 4659–4672 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. Perillo, N. L., Pace, K. E., Seilhamer, J. J. & Baum, L. G. Apoptosis of T cells mediated by galectin-1. Nature 378, 736–739 (1995).

    Article  CAS  PubMed  Google Scholar 

  133. Zhu, C. et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat. Immunol. 6, 1245–1252 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Rostoker, R. et al. Galectin-1 induces 12/15-lipoxygenase expression in murine macrophages and favors their conversion toward a pro-resolving phenotype. Prostaglandins Other Lipid Mediat. 107, 85–94 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Chavele, K. M. & Ehrenstein, M. R. Regulatory T-cells in systemic lupus erythematosus and rheumatoid arthritis. FEBS Lett. 585, 3603–3610 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. Garin, M. I. et al. Galectin-1: a key effector of regulation mediated by CD4+CD25+ T cells. Blood 109, 2058–2065 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Wu, C. et al. Galectin-9–CD44 interaction enhances stability and function of adaptive regulatory T cells. Immunity 41, 270–282 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Birnbaum, Y. et al. Augmentation of myocardial production of 15-epi-lipoxin-A4 by pioglitazone and atorvastatin in the rat. Circulation 114, 929–935 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Campos-Estrada, C. et al. Simvastatin and benznidazole-mediated prevention of Trypanosoma cruzi-induced endothelial activation: role of 15-epi-lipoxin A4 in the action of simvastatin. PLoS Negl. Trop. Dis. 9, e0003770 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Planaguma, A. et al. Lovastatin decreases acute mucosal inflammation via 15-epi-lipoxin A4 . Mucosal Immunol. 3, 270–279 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors received funding support from the Wellcome Trust Programme (grant 086867/Z/08/Z to M.P.), the UK Medical Research Council (grant MR/K013068/1 to M.P.) and Arthritis Research UK (Career Progression Fellowship 20387 to D.C. and Career Development Fellowship 19909 to L.V.N.). J. D. received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 677542). J.D. is also supported by a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (grant 107613/Z/15/Z). This work forms part of the research themes contributing to the translational research portfolio of Barts and the London Cardiovascular Biomedical Research Unit, which is supported and funded by the National Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Contributions

M.P. researched data for article. All authors made a substantial contribution to discussion of content and writing the article. D.C., J.D. and L.V.N. reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Mauro Perretti.

Ethics declarations

Competing interests

M.P. is an adviser to Palatin Technologies and a member of the Scientific Advisory Board of Antibe Therapeutics. The other authors declare they have no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perretti, M., Cooper, D., Dalli, J. et al. Immune resolution mechanisms in inflammatory arthritis. Nat Rev Rheumatol 13, 87–99 (2017). https://doi.org/10.1038/nrrheum.2016.193

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2016.193

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing