Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Autophagy: controlling cell fate in rheumatic diseases

A Corrigendum to this article was published on 09 February 2017

This article has been updated

Key Points

  • Autophagy is positively regulated by AMPK, ULK1 and beclin-1 complexes, and negatively regulated by AKT activation, mTORC1 and mTORC2 complexes

  • Autophagy drives cell-fate decisions (including T-cell selection, cell differentiation and apoptosis) and is important in immune cell function and signalling

  • Autophagy is upregulated in rheumatoid arthritis fibroblast-like synoviocytes and systemic lupus erythematosus T cells and plasma cells, increasing their survival and activity

  • Autophagy is downregulated in osteoarthritis chondrocytes (increasing their apoptosis) and systemic sclerosis fibroblasts (increasing their myofibroblastic differentiation)

  • Many therapeutic agents either directly or indirectly target autophagy; however, these must be chosen carefully owing to the multicellular pathophysiology of rheumatic diseases

Abstract

Autophagy, an endogenous process necessary for the turnover of organelles, maintains cellular homeostasis and directs cell fate. Alterations to the regulation of autophagy contribute to the progression of various rheumatic diseases, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), osteoarthritis (OA) and systemic sclerosis (SSc). Implicit in the progression of these diseases are cell-type-specific responses to surrounding factors that alter autophagy: chondrocytes within articular cartilage show decreased autophagy in OA, leading to rapid cell death and cartilage degeneration; fibroblasts from patients with SSc have restricted autophagy, similar to that seen in aged dermal fibroblasts; fibroblast-like synoviocytes from RA joints show altered autophagy, which contributes to synovial hyperplasia; and dysregulation of autophagy in haematopoietic lineage cells alters their function and maturation in SLE. Various upstream mechanisms also contribute to these diseases by regulating autophagy as part of their signalling cascades. In this Review, we discuss the links between autophagy, immune responses, fibrosis and cellular fates as they relate to pathologies associated with rheumatic diseases. Therapies in clinical use, and in preclinical or clinical development, are also discussed in relation to their effects on autophagy in rheumatic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of signalling in autophagy.
Figure 2: Dysregulation of autophagy alters cell fate in rheumatic diseases.
Figure 3: Therapeutic modulators of autophagy and associated mechanisms.

Similar content being viewed by others

Change history

  • 09 February 2017

    In the article, the sentence “The ubiquitin-like modifier-activating enzyme ATG7 ubiquitylates autophagy protein 5 (ATG5) so that it can form a functional complex with ubiquitin-like protein ATG12” should have appeared as “The ubiquitin-like modifier-activating enzyme ATG7 conjugates autophagy protein 5 (ATG5) with ubiquitin-like protein ATG12 so that it can form a functional complex”. In Figure 1 of the same article, ATG7 was incorrectly shown to be ubiquitylating ATG5, instead of conjugating ATG5 to ATG12. These errors have been corrected in the online version of the article.

References

  1. Mizushima, N. Autophagy: process and function. Genes Dev. 21, 2861–2873 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Cuervo, A. M. & Wong, E. Chaperone-mediated autophagy: roles in disease and aging. Cell Res. 24, 92–104 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Li, W. W., Li, J. & Bao, J. K. Microautophagy: lesser-known self-eating. Cell. Mol. Life Sci. 69, 1125–1136 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Baek, K. H., Park, J. & Shin, I. Autophagy-regulating small molecules and their therapeutic applications. Chem. Soc. Rev. 41, 3245–3263 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Fleming, A., Noda, T., Yoshimori, T. & Rubinsztein, D. C. Chemical modulators of autophagy as biological probes and potential therapeutics. Nat. Chem. Biol. 7, 9–17 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Gros, F. & Muller, S. Pharmacological regulators of autophagy and their link with modulators of lupus disease. Br. J. Pharmacol. 171, 4337–4359 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Renna, M., Jimenez-Sanchez, M., Sarkar, S. & Rubinsztein, D. C. Chemical inducers of autophagy that enhance the clearance of mutant proteins in neurodegenerative diseases. J. Biol. Chem. 285, 11061–11067 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rubinsztein, D. C., Codogno, P. & Levine, B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat. Rev. Drug Discov. 11, 709–730 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hosokawa, N. et al. Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy 5, 973–979 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Jung, C. H. et al. ULK–Atg13–FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 20, 1992–2003 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhao, Z. et al. Coronavirus replication does not require the autophagy gene ATG5. Autophagy 3, 581–585 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Mizushima, N. et al. A protein conjugation system essential for autophagy. Nature 395, 395–398 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Fujita, N. et al. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol. Biol. Cell 19, 2092–2100 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Itakura, E., Kishi, C., Inoue, K. & Mizushima, N. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol. Biol. Cell 19, 5360–5372 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vanhaesebroeck, B., Guillermet-Guibert, J., Graupera, M. & Bilanges, B. The emerging mechanisms of isoform-specific PI3K signalling. Nat. Rev. Mol. Cell Biol. 11, 329–341 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Zhong, Y. et al. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1–phosphatidylinositol-3-kinase complex. Nat. Cell Biol. 11, 468–476 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nazio, F. et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat. Cell Biol. 15, 406–416 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Hoyer-Hansen, M. et al. Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-β, and Bcl-2. Mol. Cell 25, 193–205 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Liang, X. H. et al. Protection against fatal Sindbis virus encephalitis by Beclin, a novel Bcl-2-interacting protein. J. Virol. 72, 8586–8596 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Pattingre, S. et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122, 927–939 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Chen, D. et al. Parkin mono-ubiquitinates Bcl-2 and regulates autophagy. J. Biol. Chem. 285, 38214–38223 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shi, C. S. & Kehrl, J. H. TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy. Sci. Signal. 3, ra42 (2010).

    PubMed  PubMed Central  Google Scholar 

  23. Wei, Y., Pattingre, S., Sinha, S., Bassik, M. & Levine, B. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol. Cell 30, 678–688 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zalckvar, E. et al. DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep. 10, 285–292 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hardie, D. G. Sensing of energy and nutrients by AMP-activated protein kinase. Am. J. Clin. Nutr. 93, 891S–896S (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Kim, J., Kundu, M., Viollet, B. & Guan, K. L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13, 132–141 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gwinn, D. M. et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214–226 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Loffler, A. S. et al. Ulk1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop. Autophagy 7, 696–706 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Hara, K. et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110, 177–189 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Nojima, H. et al. The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J. Biol. Chem. 278, 15461–15464 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Peterson, T. R. et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137, 873–886 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, L., Harris, T. E., Roth, R. A. & Lawrence, J. C. Jr. PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. J. Biol. Chem. 282, 20036–20044 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Oshiro, N. et al. The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. J. Biol. Chem. 282, 20329–20339 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Duan, S. et al. mTOR generates an auto-amplification loop by triggering the βTrCP- and CK1α-dependent degradation of DEPTOR. Mol. Cell 44, 317–324 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang, H. et al. mTOR kinase structure, mechanism and regulation. Nature 497, 217–223 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kaizuka, T. et al. Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly. J. Biol. Chem. 285, 20109–20116 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dibble, C. C. & Cantley, L. C. Regulation of mTORC1 by PI3K signaling. Trends Cell Biol. 25, 545–555 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, Y. et al. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat. Cell Biol. 5, 578–581 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Long, X., Lin, Y., Ortiz-Vega, S., Yonezawa, K. & Avruch, J. Rheb binds and regulates the mTOR kinase. Curr. Biol. 15, 702–713 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Sancak, Y. et al. Ragulator–Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290–303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pearce, L. R. et al. Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem. J. 405, 513–522 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pearce, L. R., Sommer, E. M., Sakamoto, K., Wullschleger, S. & Alessi, D. R. Protor-1 is required for efficient mTORC2-mediated activation of SGK1 in the kidney. Biochem. J. 436, 169–179 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Frias, M. A. et al. mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr. Biol. 16, 1865–1870 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Arnold, J. et al. Autophagy is dispensable for B-cell development but essential for humoral autoimmune responses. Cell Death Differ. 23, 853–864 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Matsuzawa, Y. et al. TNFAIP3 promotes survival of CD4 T cells by restricting MTOR and promoting autophagy. Autophagy 11, 1052–1062 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pengo, N. et al. Plasma cells require autophagy for sustainable immunoglobulin production. Nat. Immunol. 14, 298–305 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Pua, H. H., Dzhagalov, I., Chuck, M., Mizushima, N. & He, Y. W. A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J. Exp. Med. 204, 25–31 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang, Y., Morgan, M. J., Chen, K., Choksi, S. & Liu, Z. G. Induction of autophagy is essential for monocyte-macrophage differentiation. Blood 119, 2895–2905 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nedjic, J., Aichinger, M., Emmerich, J., Mizushima, N. & Klein, L. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature 455, 396–400 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Schmid, D., Pypaert, M. & Munz, C. Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity 26, 79–92 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Travassos, L. H. et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol. 11, 55–62 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Kuma, A., Mizushima, N., Ishihara, N. & Ohsumi, Y. Formation of the 350-kDa Apg12–Apg5•Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J. Biol. Chem. 277, 18619–18625 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Mizushima, N., Noda, T. & Ohsumi, Y. Apg16p is required for the function of the Apg12p–Apg5p conjugate in the yeast autophagy pathway. EMBO J. 18, 3888–3896 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee, H. K., Lund, J. M., Ramanathan, B., Mizushima, N. & Iwasaki, A. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 315, 1398–1401 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Lunemann, J. D. & Munz, C. Autophagy in CD4+ T-cell immunity and tolerance. Cell Death Differ. 16, 79–86 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Harris, J. et al. Autophagy controls IL-1β secretion by targeting pro-IL-1β for degradation. J. Biol. Chem. 286, 9587–9597 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jia, G., Cheng, G., Gangahar, D. M. & Agrawal, D. K. Insulin-like growth factor-1 and TNF-α regulate autophagy through c-jun N-terminal kinase and Akt pathways in human atherosclerotic vascular smooth cells. Immunol. Cell Biol. 84, 448–454 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Copetti, T., Demarchi, F. & Schneider, C. p65/RelA binds and activates the beclin 1 promoter. Autophagy 5, 858–859 (2009).

    Article  PubMed  Google Scholar 

  59. Nivon, M., Richet, E., Codogno, P., Arrigo, A. P. & Kretz-Remy, C. Autophagy activation by NFκB is essential for cell survival after heat shock. Autophagy 5, 766–783 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Djavaheri-Mergny, M. et al. NF-κB activation represses tumor necrosis factor-α-induced autophagy. J. Biol. Chem. 281, 30373–30382 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Trocoli, A. & Djavaheri-Mergny, M. The complex interplay between autophagy and NF-κB signaling pathways in cancer cells. Am. J. Cancer Res. 1, 629–649 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Criollo, A. et al. The IKK complex contributes to the induction of autophagy. EMBO J. 29, 619–631 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Mizgalska, D. et al. Interleukin-1-inducible MCPIP protein has structural and functional properties of RNase and participates in degradation of IL-1β mRNA. FEBS J. 276, 7386–7399 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Roy, A. & Kolattukudy, P. E. Monocyte chemotactic protein-induced protein (MCPIP) promotes inflammatory angiogenesis via sequential induction of oxidative stress, endoplasmic reticulum stress and autophagy. Cell. Signal. 24, 2123–2131 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Roy, A., Zhang, M., Saad, Y. & Kolattukudy, P. E. Antidicer RNAse activity of monocyte chemotactic protein-induced protein-1 is critical for inducing angiogenesis. Am. J. Physiol. Cell Physiol. 305, C1021–C1032 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Niu, J., Azfer, A., Zhelyabovska, O., Fatma, S. & Kolattukudy, P. E. Monocyte chemotactic protein (MCP)-1 promotes angiogenesis via a novel transcription factor, MCP-1-induced protein (MCPIP). J. Biol. Chem. 283, 14542–14551 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Niu, J., Wang, K., Zhelyabovska, O., Saad, Y. & Kolattukudy, P. E. MCP-1-induced protein promotes endothelial-like and angiogenic properties in human bone marrow monocytic cells. J. Pharmacol. Exp. Ther. 347, 288–297 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang, K., Niu, J., Kim, H. & Kolattukudy, P. E. Osteoclast precursor differentiation by MCPIP via oxidative stress, endoplasmic reticulum stress, and autophagy. J. Mol. Cell Biol. 3, 360–368 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kruse, K. et al. Inefficient clearance of dying cells in patients with SLE: anti-dsDNA autoantibodies, MFG-E8, HMGB-1 and other players. Apoptosis 15, 1098–1113 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Avery, D. T. et al. BAFF selectively enhances the survival of plasmablasts generated from human memory B cells. J. Clin. Invest. 112, 286–297 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Thompson, J. S. et al. BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF. Science 293, 2108–2111 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Pers, J. O. et al. BAFF overexpression is associated with autoantibody production in autoimmune diseases. Ann. NY Acad. Sci. 1050, 34–39 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Petri, M. A. et al. Baseline predictors of systemic lupus erythematosus flares: data from the combined placebo groups in the phase III belimumab trials. Arthritis Rheum. 65, 2143–2153 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Stohl, W. et al. B lymphocyte stimulator overexpression in patients with systemic lupus erythematosus: longitudinal observations. Arthritis Rheum. 48, 3475–3486 (2003).

    Article  PubMed  Google Scholar 

  75. Rickert, R. C., Jellusova, J. & Miletic, A. V. Signaling by the tumor necrosis factor receptor superfamily in B-cell biology and disease. Immunol. Rev. 244, 115–133 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Otipoby, K. L. et al. BAFF activates Akt and Erk through BAFF-R in an IKK1-dependent manner in primary mouse B cells. Proc. Natl. Acad. Sci. USA 105, 12435–12438 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Qian, Y. et al. Act1, a negative regulator in CD40- and BAFF-mediated B cell survival. Immunity 21, 575–587 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Kim, H. A., Seo, G. Y. & Kim, P. H. Macrophage-derived BAFF induces AID expression through the p38MAPK/CREB and JNK/AP-1 pathways. J. Leukoc. Biol. 89, 393–398 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Schweighoffer, E. et al. The BAFF receptor transduces survival signals by co-opting the B cell receptor signaling pathway. Immunity 38, 475–488 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Clarke, A. J. et al. Autophagy is activated in systemic lupus erythematosus and required for plasmablast development. Ann. Rheum. Dis. 74, 912–920 (2015).

    Article  PubMed  Google Scholar 

  81. Dong, G. et al. STS-1 promotes IFN-α induced autophagy by activating the JAK1–STAT1 signaling pathway in B cells. Eur. J. Immunol. 45, 2377–2388 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Li, B., Yue, Y., Dong, C., Shi, Y. & Xiong, S. Blockade of macrophage autophagy ameliorates activated lymphocytes-derived DNA induced murine lupus possibly via inhibition of proinflammatory cytokine production. Clin. Exp. Rheumatol. 32, 705–714 (2014).

    PubMed  Google Scholar 

  83. Weindel, C. G. et al. B cell autophagy mediates TLR7-dependent autoimmunity and inflammation. Autophagy 11, 1010–1024 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lopez, P., Alonso-Perez, E., Rodriguez-Carrio, J. & Suarez, A. Influence of Atg5 mutation in SLE depends on functional IL-10 genotype. PLoS ONE 8, e78756 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jarvinen, T. M. et al. Replication of GWAS-identified systemic lupus erythematosus susceptibility genes affirms B-cell receptor pathway signalling and strengthens the role of IRF5 in disease susceptibility in a Northern European population. Rheumatology 51, 87–92 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Zhang, Y. M. et al. Rare variants of ATG5 are likely to be associated with chinese patients with systemic lupus erythematosus. Medicine 94, e939 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wofsy, D. & Seaman, W. E. Reversal of advanced murine lupus in NZB/NZW F1 mice by treatment with monoclonal antibody to L3T4. J. Immunol. 138, 3247–3253 (1987).

    CAS  PubMed  Google Scholar 

  88. Mihara, M. et al. Immunologic abnormality in NZB/NZW F1 mice. Thymus-independent occurrence of B cell abnormality and requirement for T cells in the development of autoimmune disease, as evidenced by an analysis of the athymic nude individuals. J. Immunol. 141, 85–90 (1988).

    CAS  PubMed  Google Scholar 

  89. La Cava, A. Lupus and T cells. Lupus 18, 196–201 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Pierdominici, M. et al. Role of autophagy in immunity and autoimmunity, with a special focus on systemic lupus erythematosus. FASEB J. 26, 1400–1412 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Alessandri, C. et al. T lymphocytes from patients with systemic lupus erythematosus are resistant to induction of autophagy. FASEB J. 26, 4722–4732 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gros, F. et al. Macroautophagy is deregulated in murine and human lupus T lymphocytes. Autophagy 8, 1113–1123 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Li, C. et al. Autophagy is induced in CD4+ T cells and important for the growth factor-withdrawal cell death. J. Immunol. 177, 5163–5168 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Martinez, J. et al. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat. Cell Biol. 17, 893–906 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Martinez, J. et al. Noncanonical autophagy inhibits the autoinflammatory, lupus-like response to dying cells. Nature 533, 115–119 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pope, R. M. Apoptosis as a therapeutic tool in rheumatoid arthritis. Nat. Rev. Immunol. 2, 527–535 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Steenvoorden, M. M. et al. Transition of healthy to diseased synovial tissue in rheumatoid arthritis is associated with gain of mesenchymal/fibrotic characteristics. Arthritis Res. Ther. 8, R165 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Huber, L. C. et al. Synovial fibroblasts: key players in rheumatoid arthritis. Rheumatology 45, 669–675 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Xu, K. et al. Reduced apoptosis correlates with enhanced autophagy in synovial tissues of rheumatoid arthritis. Inflamm. Res. 62, 229–237 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Kato, M., Ospelt, C., Gay, R. E., Gay, S. & Klein, K. Dual role of autophagy in stress-induced cell death in rheumatoid arthritis synovial fibroblasts. Arthritis Rheumatol. 66, 40–48 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Shin, Y. J. et al. Autophagy induction and CHOP under-expression promotes survival of fibroblasts from rheumatoid arthritis patients under endoplasmic reticulum stress. Arthritis Res. Ther. 12, R19 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Xu, K. et al. Autophagy induction contributes to the resistance to methotrexate treatment in rheumatoid arthritis fibroblast-like synovial cells through high mobility group box chromosomal protein 1. Arthritis Res. Ther. 17, 374 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wegner, N. et al. Autoimmunity to specific citrullinated proteins gives the first clues to the etiology of rheumatoid arthritis. Immunol. Rev. 233, 34–54 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Scally, S. W. et al. A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis. J. Exp. Med. 210, 2569–2582 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ireland, J. M. & Unanue, E. R. Autophagy in antigen-presenting cells results in presentation of citrullinated peptides to CD4 T cells. J. Exp. Med. 208, 2625–2632 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ireland, J. M. & Unanue, E. R. Processing of proteins in autophagy vesicles of antigen-presenting cells generates citrullinated peptides recognized by the immune system. Autophagy 8, 429–430 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sorice, M. et al. Autophagy generates citrullinated peptides in human synoviocytes: a possible trigger for anti-citrullinated peptide antibodies. Rheumatology (Oxford) http://dx.doi.org/10.1093/rheumatology/kew178 (2016).

  108. Schett, G. & Gravallese, E. Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment. Nat. Rev. Rheumatol. 8, 656–664 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Liu, F. et al. Suppression of autophagy by FIP200 deletion leads to osteopenia in mice through the inhibition of osteoblast terminal differentiation. J. Bone Miner. Res. 28, 2414–2430 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Nollet, M. et al. Autophagy in osteoblasts is involved in mineralization and bone homeostasis. Autophagy 10, 1965–1977 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lin, N. Y. et al. Autophagy regulates TNFα-mediated joint destruction in experimental arthritis. Ann. Rheum. Dis. 72, 761–768 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Greene, M. A. & Loeser, R. F. Aging-related inflammation in osteoarthritis. Osteoarthritis Cartilage 23, 1966–1971 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kapoor, M., Martel-Pelletier, J., Lajeunesse, D., Pelletier, J. P. & Fahmi, H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat. Rev. Rheumatol. 7, 33–42 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Sasaki, H. et al. Autophagy modulates osteoarthritis-related gene expression in human chondrocytes. Arthritis Rheum. 64, 1920–1928 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Zhang, Y. et al. Cartilage-specific deletion of mTOR upregulates autophagy and protects mice from osteoarthritis. Ann. Rheum. Dis. 74, 1432–1440 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Carames, B. et al. Mechanical injury suppresses autophagy regulators and pharmacologic activation of autophagy results in chondroprotection. Arthritis Rheum. 64, 1182–1192 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Cinque, L. et al. FGF signalling regulates bone growth through autophagy. Nature 528, 272–275 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Carames, B., Olmer, M., Kiosses, W. B. & Lotz, M. K. The relationship of autophagy defects to cartilage damage during joint aging in a mouse model. Arthritis Rheumatol. 67, 1568–1576 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hui, W. et al. Oxidative changes and signalling pathways are pivotal in initiating age-related changes in articular cartilage. Ann. Rheum. Dis. 75, 449–458 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Vuppalapati, K. K. et al. Targeted deletion of autophagy genes Atg5 or Atg7 in the chondrocytes promotes caspase-dependent cell death and leads to mild growth retardation. J. Bone Miner. Res. 30, 2249–2261 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Bouderlique, T. et al. Targeted deletion of Atg5 in chondrocytes promotes age-related osteoarthritis. Ann. Rheum. Dis. 75, 627–631 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. Marion-Letellier, R., Savoye, G. & Ghosh, S. Fatty acids, eicosanoids and PPAR gamma. Eur. J. Pharmacol. http://dx.doi.org/10.1016/j.ejphar.2015.11.004 (2015).

  123. Meirhaeghe, A. & Amouyel, P. Impact of genetic variation of PPARγ in humans. Mol. Genet. Metab. 83, 93–102 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Vasheghani, F. et al. PPARγ deficiency results in severe, accelerated osteoarthritis associated with aberrant mTOR signalling in the articular cartilage. Ann. Rheum. Dis. 74, 569–578 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Jiang, C., Ting, A. T. & Seed, B. PPAR-γ agonists inhibit production of monocyte inflammatory cytokines. Nature 391, 82–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  126. Afif, H. et al. Peroxisome proliferator-activated receptor γ1 expression is diminished in human osteoarthritic cartilage and is downregulated by interleukin-1β in articular chondrocytes. Arthritis Res. Ther. 9, R31 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Dell'Accio, F. & Sherwood, J. PPARγ/mTOR signalling: striking the right balance in cartilage homeostasis. Ann. Rheum. Dis. 74, 477–479 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Ho, Y. Y., Lagares, D., Tager, A. M. & Kapoor, M. Fibrosis — a lethal component of systemic sclerosis. Nat. Rev. Rheumatol. 10, 390–402 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Frech, T. et al. Autophagy is a key feature in the pathogenesis of systemic sclerosis. Rheumatol. Int. 34, 435–439 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Dumit, V. I. et al. Altered MCM protein levels and autophagic flux in aged and systemic sclerosis dermal fibroblasts. J. Invest. Dermatol. 134, 2321–2330 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Varga, J. & Pasche, B. Transforming growth factor β as a therapeutic target in systemic sclerosis. Nat. Rev. Rheumatol. 5, 200–206 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kim, S. I. et al. Autophagy promotes intracellular degradation of type I collagen induced by transforming growth factor (TGF)-β1. J. Biol. Chem. 287, 11677–11688 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ghavami, S. et al. Autophagy is a regulator of TGF-β1-induced fibrogenesis in primary human atrial myofibroblasts. Cell Death Dis. 6, e1696 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ding, Y. et al. Autophagy regulates TGF-β expression and suppresses kidney fibrosis induced by unilateral ureteral obstruction. J. Am. Soc. Nephrol. 25, 2835–2846 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Razani, B. et al. Caveolin-1 regulates transforming growth factor (TGF)-β/SMAD signaling through an interaction with the TGF-β type I receptor. J. Biol. Chem. 276, 6727–6738 (2001).

    Article  CAS  PubMed  Google Scholar 

  136. Del Galdo, F. et al. Decreased expression of caveolin 1 in patients with systemic sclerosis: crucial role in the pathogenesis of tissue fibrosis. Arthritis Rheum. 58, 2854–2865 (2008).

    Article  PubMed  Google Scholar 

  137. Castello-Cros, R. et al. Scleroderma-like properties of skin from caveolin-1-deficient mice: implications for new treatment strategies in patients with fibrosis and systemic sclerosis. Cell Cycle 10, 2140–2150 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Shi, J. H. et al. Reduced expression of microtubule-associated protein 1 light chain 3 in hypertrophic scars. Arch. Dermatol. Res. 304, 209–215 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. Quan, T., Shao, Y., He, T., Voorhees, J. J. & Fisher, G. J. Reduced expression of connective tissue growth factor (CTGF/CCN2) mediates collagen loss in chronologically aged human skin. J. Invest. Dermatol. 130, 415–424 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Dekker, P. et al. Microarray-based identification of age-dependent differences in gene expression of human dermal fibroblasts. Mech. Ageing Dev. 133, 498–507 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Beyer, C. et al. β-catenin is a central mediator of pro-fibrotic Wnt signaling in systemic sclerosis. Ann. Rheum. Dis. 71, 761–767 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Akhmetshina, A. et al. Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis. Nat. Commun. 3, 735 (2012).

    Article  CAS  PubMed  Google Scholar 

  143. Gao, C. et al. Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation. Nat. Cell Biol. 12, 781–790 (2010).

    Article  CAS  PubMed  Google Scholar 

  144. Inoki, K. et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126, 955–968 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. Kapoor, M., Kojima, F., Yang, L. & Crofford, L. J. Sequential induction of pro- and anti-inflammatory prostaglandins and peroxisome proliferators-activated receptor-gamma during normal wound healing: a time course study. Prostaglandins Leukot. Essent. Fatty Acids 76, 103–112 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kapoor, M. et al. Loss of peroxisome proliferator-activated receptor γ in mouse fibroblasts results in increased susceptibility to bleomycin-induced skin fibrosis. Arthritis Rheum. 60, 2822–2829 (2009).

    Article  CAS  PubMed  Google Scholar 

  147. Wei, J. et al. PPARγ downregulation by TGFβ in fibroblast and impaired expression and function in systemic sclerosis: a novel mechanism for progressive fibrogenesis. PLoS ONE 5, e13778 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Pan, H. W., Xu, J. T. & Chen, J. S. Pioglitazone inhibits TGFβ induced keratocyte transformation to myofibroblast and extracellular matrix production. Mol. Biol. Rep. 38, 4501–4508 (2011).

    Article  CAS  PubMed  Google Scholar 

  149. Brown, E. J. et al. A mammalian protein targeted by G1-arresting rapamycin–receptor complex. Nature 369, 756–758 (1994).

    Article  CAS  PubMed  Google Scholar 

  150. Pallet, N. & Legendre, C. Adverse events associated with mTOR inhibitors. Expert Opin. Drug Saf. 12, 177–186 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Bruyn, G. A. et al. Everolimus in patients with rheumatoid arthritis receiving concomitant methotrexate: a 3-month, double-blind, randomised, placebo-controlled, parallel-group, proof-of-concept study. Ann. Rheum. Dis. 67, 1090–1095 (2008).

    Article  CAS  PubMed  Google Scholar 

  152. Takayama, K. et al. Local intra-articular injection of rapamycin delays articular cartilage degeneration in a murine model of osteoarthritis. Arthritis Res. Ther. 16, 482 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Matsuzaki, T. et al. Intra-articular administration of gelatin hydrogels incorporating rapamycin-micelles reduces the development of experimental osteoarthritis in a murine model. Biomaterials 35, 9904–9911 (2014).

    Article  CAS  PubMed  Google Scholar 

  154. Carames, B. et al. Autophagy activation by rapamycin reduces severity of experimental osteoarthritis. Ann. Rheum. Dis. 71, 575–581 (2012).

    Article  CAS  PubMed  Google Scholar 

  155. Yoshizaki, A. et al. Treatment with rapamycin prevents fibrosis in tight-skin and bleomycin-induced mouse models of systemic sclerosis. Arthritis Rheum. 62, 2476–2487 (2010).

    Article  CAS  PubMed  Google Scholar 

  156. Su, T. I. et al. Rapamycin versus methotrexate in early diffuse systemic sclerosis: results from a randomized, single-blind pilot study. Arthritis Rheum. 60, 3821–3830 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kalia, S. & Dutz, J. P. New concepts in antimalarial use and mode of action in dermatology. Dermatol. Ther. 20, 160–174 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Amaravadi, R. K. et al. Principles and current strategies for targeting autophagy for cancer treatment. Clin. Cancer Res. 17, 654–666 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Marceau, F., Bawolak, M. T., Bouthillier, J. & Morissette, G. Vacuolar ATPase-mediated cellular concentration and retention of quinacrine: a model for the distribution of lipophilic cationic drugs to autophagic vacuoles. Drug Metab. Dispos. 37, 2271–2274 (2009).

    Article  CAS  PubMed  Google Scholar 

  160. Liu, Q. et al. Hydroxychloroquine facilitates autophagosome formation but not degradation to suppress the proliferation of cervical cancer SiHa cells. Oncol. Lett. 7, 1057–1062 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ding, H. J., Denniston, A. K., Rao, V. K. & Gordon, C. Hydroxychloroquine-related retinal toxicity. Rheumatology (Oxford) 55, 957–967 (2016).

    Article  CAS  Google Scholar 

  162. Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167–1174 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Phielix, E., Szendroedi, J. & Roden, M. The role of metformin and thiazolidinediones in the regulation of hepatic glucose metabolism and its clinical impact. Trends Pharmacol. Sci. 32, 607–616 (2011).

    Article  CAS  PubMed  Google Scholar 

  164. Teranishi, T. et al. Effects of pioglitazone and metformin on intracellular lipid content in liver and skeletal muscle of individuals with type 2 diabetes mellitus. Metabolism 56, 1418–1424 (2007).

    Article  CAS  PubMed  Google Scholar 

  165. Egan, D. F. et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456–461 (2011).

    Article  CAS  PubMed  Google Scholar 

  166. Arai, M. et al. Metformin, an antidiabetic agent, suppresses the production of tumor necrosis factor and tissue factor by inhibiting early growth response factor-1 expression in human monocytes in vitro. J. Pharmacol. Exp. Ther. 334, 206–213 (2010).

    Article  CAS  PubMed  Google Scholar 

  167. Hyun, B. et al. Metformin down-regulates TNF-α secretion via suppression of scavenger receptors in macrophages. Immune Netw. 13, 123–132 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Yan, H., Zhou, H. F., Hu, Y. & Pham, C. T. Suppression of experimental arthritis through AMP-activated protein kinase activation and autophagy modulation. J. Rheum. Dis. Treat. 1, 5 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Bennett, W. L. et al. Oral Diabetes Medications for Adults With Type 2 Diabetes: An Update (Agency for Healthcare Research and Quality (US), 2011).

    Google Scholar 

  170. Ji, M. M. et al. Induction of autophagy by valproic acid enhanced lymphoma cell chemosensitivity through HDAC-independent and IP3-mediated PRKAA activation. Autophagy 11, 2160–2171 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Gaitatzis, A. & Sander, J. W. The long-term safety of antiepileptic drugs. CNS Drugs 27, 435–455 (2013).

    Article  CAS  PubMed  Google Scholar 

  172. Nissen, S. E. & Wolski, K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N. Engl. J. Med. 356, 2457–2471 (2007).

    Article  CAS  PubMed  Google Scholar 

  173. Lehmann, J. M. et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ). J. Biol. Chem. 270, 12953–12956 (1995).

    Article  CAS  PubMed  Google Scholar 

  174. Oakes, N. D. et al. A new antidiabetic agent, BRL 49653, reduces lipid availability and improves insulin action and glucoregulation in the rat. Diabetes 43, 1203–1210 (1994).

    Article  CAS  PubMed  Google Scholar 

  175. Miyazaki, Y., Matsuda, M. & DeFronzo, R. A. Dose-response effect of pioglitazone on insulin sensitivity and insulin secretion in type 2 diabetes. Diabetes Care 25, 517–523 (2002).

    Article  CAS  PubMed  Google Scholar 

  176. Bortolini, M., Wright, M. B., Bopst, M. & Balas, B. Examining the safety of PPAR agonists — current trends and future prospects. Expert Opin. Drug Saf. 12, 65–79 (2013).

    Article  CAS  PubMed  Google Scholar 

  177. US National Library of Science. ClinicalTrials.govhttps://clinicaltrials.gov/show/NCT00554853 (2013).

  178. US National Library of Science. ClinicalTrials.govhttps://clinicaltrials.gov/show/NCT00763139 (2014).

  179. Ormseth, M. J. et al. Peroxisome proliferator-activated receptor γ agonist effect on rheumatoid arthritis: a randomized controlled trial. Arthritis Res. Ther. 15, R110 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Ormseth, M. J. et al. Reversing vascular dysfunction in rheumatoid arthritis: improved augmentation index but not endothelial function with peroxisome proliferator-activated receptor gamma agonist therapy. Arthritis Rheumatol. 66, 2331–2338 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. US National Library of Science. ClinicalTrials.govhttps://clinicaltrials.gov/show/NCT01322308 (2014).

  182. US National Library of Science. ClinicalTrials.govhttps://clinicaltrials.gov/show/NCT02338999 (2016).

  183. US National Library of Science. ClinicalTrials.govhttps://clinicaltrials.gov/show/NCT00379600 (2012).

  184. Gierman, L. M. et al. Metabolic stress-induced inflammation plays a major role in the development of osteoarthritis in mice. Arthritis Rheum. 64, 1172–1181 (2012).

    Article  CAS  PubMed  Google Scholar 

  185. Antonelli, A. et al. Peroxisome proliferator-activated receptor γ agonists reduce cell proliferation and viability and increase apoptosis in systemic sclerosis fibroblasts. Br. J. Dermatol. 168, 129–135 (2013).

    Article  CAS  PubMed  Google Scholar 

  186. Wu, M. et al. Rosiglitazone abrogates bleomycin-induced scleroderma and blocks profibrotic responses through peroxisome proliferator-activated receptor-γ. Am. J. Pathol. 174, 519–533 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Macri, C. et al. Modulation of deregulated chaperone-mediated autophagy by a phosphopeptide. Autophagy 11, 472–486 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Zimmer, R., Scherbarth, H. R., Rillo, O. L., Gomez-Reino, J. J. & Muller, S. Lupuzor/P140 peptide in patients with systemic lupus erythematosus: a randomised, double-blind, placebo-controlled phase IIb clinical trial. Ann. Rheum. Dis. 72, 1830–1835 (2013).

    Article  CAS  PubMed  Google Scholar 

  189. Muller, S. et al. Spliceosomal peptide P140 for immunotherapy of systemic lupus erythematosus: results of an early phase II clinical trial. Arthritis Rheum. 58, 3873–3883 (2008).

    Article  CAS  PubMed  Google Scholar 

  190. US National Library of Science. ClinicalTrials.govhttps://clinicaltrials.gov/show/NCT02504645 (2016).

  191. Muller, S. & Wallace, D. J. The importance of implementing proper selection of excipients in lupus clinical trials. Lupus 23, 609–614 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. DeBosch, B. J. et al. Trehalose inhibits solute carrier 2A (SLC2A) proteins to induce autophagy and prevent hepatic steatosis. Sci. Signal. 9, ra21 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Navarra, S. V. et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet 377, 721–731 (2011).

    Article  CAS  PubMed  Google Scholar 

  194. Bruce, I. N. et al. Long-term organ damage accrual and safety in patients with SLE treated with belimumab plus standard of care. Lupus http://dx.doi.org/10.1177/0961203315625119 (2016).

  195. Wallace, D. J. et al. Safety profile of belimumab: pooled data from placebo-controlled phase 2 and 3 studies in patients with systemic lupus erythematosus. Lupus 22, 144–154 (2013).

    Article  CAS  PubMed  Google Scholar 

  196. Taylor, P. C. & Feldmann, M. Anti-TNF biologic agents: still the therapy of choice for rheumatoid arthritis. Nat. Rev. Rheumatol. 5, 578–582 (2009).

    Article  CAS  PubMed  Google Scholar 

  197. Ramiro, S. et al. Safety of synthetic and biological DMARDs: a systematic literature review informing the 2013 update of the EULAR recommendations for management of rheumatoid arthritis. Ann. Rheum. Dis. 73, 529–535 (2014).

    Article  CAS  PubMed  Google Scholar 

  198. Connor, A. M., Mahomed, N., Gandhi, R., Keystone, E. C. & Berger, S. A. TNFα modulates protein degradation pathways in rheumatoid arthritis synovial fibroblasts. Arthritis Res. Ther. 14, R62 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Selmi, C., Ceribelli, A., Naguwa, S. M., Cantarini, L. & Shoenfeld, Y. Safety issues and concerns of new immunomodulators in rheumatology. Expert Opin. Drug Saf. 14, 389–399 (2015).

    Article  CAS  PubMed  Google Scholar 

  200. Rice, L. M. et al. Fresolimumab treatment decreases biomarkers and improves clinical symptoms in systemic sclerosis patients. J. Clin. Invest. 125, 2795–2807 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Lacouture, M. E. et al. Cutaneous keratoacanthomas/squamous cell carcinomas associated with neutralization of transforming growth factor β by the monoclonal antibody fresolimumab (GC1008). Cancer Immunol. Immunother. 64, 437–446 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Morris, J. C. et al. Phase I study of GC1008 (fresolimumab): a human anti-transforming growth factor-beta (TGFβ) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma. PLoS ONE 9, e90353 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Stevenson, J. P. et al. Immunological effects of the TGFβ-blocking antibody GC1008 in malignant pleural mesothelioma patients. Oncoimmunology 2, e26218 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Trachtman, H. et al. A phase 1, single-dose study of fresolimumab, an anti-TGF-β antibody, in treatment-resistant primary focal segmental glomerulosclerosis. Kidney Int. 79, 1236–1243 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Sosulski, M. L. et al. Deregulation of selective autophagy during aging and pulmonary fibrosis: the role of TGFβ1. Aging Cell 14, 774–783 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Vingtdeux, V. et al. AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-β peptide metabolism. J. Biol. Chem. 285, 9100–9113 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Xuzhu, G. et al. Resveratrol modulates murine collagen-induced arthritis by inhibiting Th17 and B-cell function. Ann. Rheum. Dis. 71, 129–135 (2012).

    Article  CAS  PubMed  Google Scholar 

  208. Heraud, F., Heraud, A. & Harmand, M. F. Apoptosis in normal and osteoarthritic human articular cartilage. Ann. Rheum. Dis. 59, 959–965 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Chia, S. et al. Novel agents and associated toxicities of inhibitors of the pi3k/Akt/mtor pathway for the treatment of breast cancer. Curr. Oncol. 22, 33–48 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Asahina, H. et al. Safety and tolerability of AZD8055 in Japanese patients with advanced solid tumors; a dose-finding phase I study. Invest. New Drugs 31, 677–684 (2013).

    Article  CAS  PubMed  Google Scholar 

  211. Bendell, J. C. et al. A phase I dose-escalation study to assess safety, tolerability, pharmacokinetics, and preliminary efficacy of the dual mTORC1/mTORC2 kinase inhibitor CC-223 in patients with advanced solid tumors or multiple myeloma. Cancer 121, 3481–3490 (2015).

    Article  CAS  PubMed  Google Scholar 

  212. Naing, A. et al. Safety, tolerability, pharmacokinetics and pharmacodynamics of AZD8055 in advanced solid tumours and lymphoma. Br. J. Cancer 107, 1093–1099 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Britten, C. D. et al. Phase I study of PF-04691502, a small-molecule, oral, dual inhibitor of PI3K and mTOR, in patients with advanced cancer. Invest. New Drugs 32, 510–517 (2014).

    Article  CAS  PubMed  Google Scholar 

  214. Shapiro, G. I. et al. First-in-human study of PF-05212384 (PKI-587), a small-molecule, intravenous, dual inhibitor of PI3K and mTOR in patients with advanced cancer. Clin. Cancer Res. 21, 1888–1895 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Seront, E. et al. Phase II study of dual phosphoinositol-3-kinase (PI3K) and mammalian target of rapamycin (mTOR) inhibitor BEZ235 in patients with locally advanced or metastatic transitional cell carcinoma (TCC). BJU Int. http://dx.doi.org/10.1111/bju.13415 (2016).

  216. Dolly, S. et al. Phase I study of apitolisib (GDC-0980), dual phosphatidylinositol-3-kinase and mammalian target of rapamycin kinase inhibitor, in patients with advanced solid tumors. Clin. Cancer Res. http://dx.doi.org/10.1158/1078-0432.CCR-15-2225 (2016).

  217. Basu, B. et al. First-in-human pharmacokinetic and pharmacodynamic study of the dual m-TORC 1/2 inhibitor AZD2014. Clin. Cancer Res. 21, 3412–3419 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Chen, J., Crawford, R. & Xiao, Y. Vertical inhibition of the PI3K/Akt/mTOR pathway for the treatment of osteoarthritis. J. Cell. Biochem. 114, 245–249 (2013).

    Article  CAS  PubMed  Google Scholar 

  219. US National Library of Science. ClinicalTrials.govhttps://clinicaltrials.gov/show/NCT00779194 (2015).

  220. US National Library of Science. ClinicalTrials.govhttps://clinicaltrials.gov/show/NCT01914770 (2013).

  221. US National Library of Science. ClinicalTrials.govhttps://clinicaltrials.gov/show/NCT00392951 (2016).

  222. US National Library of Science. ClinicalTrials.govhttps://clinicaltrials.gov/show/NCT01946880 (2016).

  223. US National Library of Science. ClinicalTrials.govhttps://clinicaltrials.gov/show/NCT02349061 (2016).

  224. US National Library of Science. ClinicalTrials.govhttps://clinicaltrials.gov/show/NCT02246257 (2015).

  225. US National Library of Science. ClinicalTrials.govhttps://clinicaltrials.gov/show/NCT02644499 (2016).

  226. US National Library of Science. ClinicalTrials.govhttps://clinicaltrials.gov/show/NCT01941940 (2015).

  227. US National Library of Science. ClinicalTrials.govhttps://clinicaltrials.gov/show/NCT01256736 (2013).

  228. US National Library of Science. ClinicalTrials.govhttps://clinicaltrials.gov/show/NCT01211834 (2010).

  229. US National Library of Science. ClinicalTrials.govhttps://clinicaltrials.gov/show/NCT00805519 (2010).

  230. US National Library of Science. ClinicalTrials.govhttps://clinicaltrials.gov/show/NCT02166229 (2014).

Download references

Acknowledgements

The authors' work is supported by the Canadian Institutes of Health Research Operating Grant 126016 to M.K. and the Arthritis Program Grant to M.K. The authors would like to acknowledge the help of Brian Wu in designing figures for this Review.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for this article, made substantial contributions to discussions of the content, wrote the article and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Mohit Kapoor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rockel, J., Kapoor, M. Autophagy: controlling cell fate in rheumatic diseases. Nat Rev Rheumatol 12, 517–531 (2016). https://doi.org/10.1038/nrrheum.2016.92

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2016.92

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing