Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The inflammatory role of phagocyte apoptotic pathways in rheumatic diseases

Key Points

  • Macrophages and dendritic cells (DCs) are essential for the pathogenesis of rheumatoid arthritis (RA)

  • Phagocytosis of dying cells is necessary for the resolution of inflammation, and defects in this process can lead to rheumatic disease

  • Macrophage-specific and DC-specific defects in mediators of the extrinsic apoptotic pathway induce altered responses in experimental arthritis, and overexpression and/or deletion of components of the intrinsic apoptotic pathway influence the development of experimental arthritis

  • Global deletion of necroptotic signalling mediators results in a more rapid resolution of experimental arthritis, whereas macrophage-specific deletion of inhibitors of apoptosis exacerbates experimental arthritis

  • Autophagy might have a cell-specific inhibitory and proinflammatory role in RA and experimental arthritis

  • Risk polymorphisms in mediators of the extrinsic apoptotic pathway and autophagy have been identified in patients with RA

Abstract

Rheumatoid arthritis affects nearly 1% of the world's population and is a debilitating autoimmune condition that can result in joint destruction. During the past decade, inflammatory functions have been described for signalling molecules classically involved in apoptotic and non-apoptotic death pathways, including, but not limited to, Toll-like receptor signalling, inflammasome activation, cytokine production, macrophage polarization and antigen citrullination. In light of these remarkable advances in the understanding of inflammatory mechanisms of the death machinery, this Review provides a snapshot of the available evidence implicating death pathways, especially within the phagocyte populations of the innate immune system, in the perpetuation of rheumatoid arthritis and other rheumatic diseases. Elevated levels of signalling mediators of both extrinsic and intrinsic apoptosis, as well as the autophagy, are observed in the joints of patients with rheumatoid arthritis. Furthermore, risk polymorphisms are present in signalling molecules of the extrinsic apoptotic and autophagy death pathways. Although research into the mechanisms underlying these pathways has made considerable progress, this Review highlights areas where further investigation is particularly needed. This exploration is critical, as new discoveries in this field could lead to the development of novel therapies for rheumatoid arthritis and other rheumatic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Extrinsic and intrinsic pathways of apoptosis.
Figure 2: Caspase 8-deficient macrophages are hyperresponsive to Toll-like receptor activation.
Figure 3: Caspase 8 is required for normal M1 macrophage polarization in vitro.
Figure 4: Caspase 8-deficient dendritic cells are hyperresponsive to Toll-like receptor activation.

Similar content being viewed by others

References

  1. Helmick, C. G. et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I. Arthritis Rheum. 58, 15–25 (2008).

    Article  PubMed  Google Scholar 

  2. Lundy, S. K., Sarkar, S., Tesmer, L. A. & Fox, D. A. Cells of the synovium in rheumatoid arthritis. T lymphocytes. Arthritis Res. Ther. 9, 202 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Geissmann, F. et al. Development of monocytes, macrophages, and dendritic cells. Science 327, 656–661 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Farache, J., Zigmond, E., Shakhar, G. & Jung, S. Contributions of dendritic cells and macrophages to intestinal homeostasis and immune defense. Immunol. Cell Biol. 91, 232–239 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Galli, S. J., Borregaard, N. & Wynn, T. A. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat. Immunol. 12, 1035–1044 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. van den Berg, W. B. & van Lent, P. L. E. M. The role of macrophages in chronic arthritis. Immunbiol. 195, 614–623 (1996).

    Article  CAS  Google Scholar 

  7. Ziegler-Heitbrock, L. et al. Nomenclature of monocytes and dendritic cells in blood. Blood 116, e74–80 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Mulherin, D., Fitzgerald, O. & Bresnihan, B. Synovial tissue macrophage populations and articular damage in rheumatoid arthritis. Arthritis Rheum. 39, 115–124 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Yanni, G., Whelan, A., Feighery, C. & Bresnihan, B. Synovial tissue macrophages and joint erosion in rheumatoid arthritis. Ann. Rheum. Dis. 53, 39–44 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Choy, E. H. & Panayi, G. S. Cytokine pathways and joint inflammation in rheumatoid arthritis. N. Engl. J. Med. 344, 907–916 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Huang, Q., Ma, Y., Adebayo, A. & Pope, R. M. Increased macrophage activation mediated through toll-like receptors in rheumatoid arthritis. Arthritis Rheum. 56, 2192–2201 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Chamberlain, N. D. et al. Ligation of TLR7 by rheumatoid arthritis synovial fluid single strand RNA induces transcription of TNFα in monocytes. Ann. Rheum. Dis. 72, 418–426 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Huang, Q. & Pope, R. M. Toll-like receptor signaling: a potential link among rheumatoid arthritis, systemic lupus, and atherosclerosis. J. Leukocyte Biol. 88, 253–262 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nuki, G., Bresnihan, B., Bear, M. B. & McCabe, D. Long-term safety and maintenance of clinical improvement following treatment with anakinra (recombinant human interleukin-1 receptor antagonist) in patients with rheumatoid arthritis: extension phase of a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 46, 2838–2846 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Genovese, M. C. et al. Etanercept versus methotrexate in patients with early rheumatoid arthritis: two-year radiographic and clinical outcomes. Arthritis Rheum. 46, 1443–1450 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. De Rycke, L. et al. Differential expression and response to anti-TNFα treatment of infiltrating versus resident tissue macrophage subsets in autoimmune arthritis. J. Pathol. 206, 17–27 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Bresnihan, B. et al. Synovial macrophages as a biomarker of response to therapeutic intervention in rheumatoid arthritis: standardization and consistency across centers. J. Rheumatol. 34, 620–622 (2007).

    PubMed  Google Scholar 

  18. Wijbrandts, C. A. et al. Absence of changes in the number of synovial sublining macrophages after ineffective treatment for rheumatoid arthritis: implications for use of synovial sublining macrophages as a biomarker. Arthritis Rheum. 56, 3869–3871 (2007).

    Article  PubMed  Google Scholar 

  19. Arandjelovic, S. & Ravichandran, K. S. Phagocytosis of apoptotic cells in homeostasis. Nat. Immunol. 16, 907–917 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gatza, E. et al. Extracorporeal photopheresis reverses experimental graft-versus-host disease through regulatory T cells. Blood 112, 1515–1521 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hashimoto, D., Miller, J. & Merad, M. Dendritic cell and macrophage heterogeneity in vivo. Immunity 35, 323–335 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Roszer, T. Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediators Inflamm. 2015, 816460 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gordon, S. & Martinez, F. O. Alternative activation of macrophages: mechanism and functions. Immunity 32, 593–604 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Odegaard, J. I. & Chawla, A. Alternative macrophage activation and metabolism. Annu. Rev. Pathol. 6, 275–297 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Martinez, F. O. & Gordon, S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6, 13 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Murray, P. J. et al. Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines. Immunity 41, 14–20 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xue, J. et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40, 274–288 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. van Furth, R. & Cohn, Z. A. The origin and kinetics of mononuclear phagocytes. J. Exp. Med. 128, 415–435 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Edwards, J. C. & Willoughby, D. A. Demonstration of bone marrow derived cells in synovial lining by means of giant intracellular granules as genetic markers. Ann. Rheum. Dis. 41, 177–182 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Edwards, J. C. The nature and origins of synovium: experimental approaches to the study of synoviocyte differentiation. J. Anat. 184, 493–501 (1994).

    PubMed  PubMed Central  Google Scholar 

  31. Yona, S. et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38, 79–91 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336, 86–90 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Amit, I., Winter, D. R. & Jung, S. The role of the local environment and epigenetics in shaping macrophage identity and their effect on tissue homeostasis. Nat. Immunol. 17, 18–25 (2015).

    Article  CAS  Google Scholar 

  35. Gomez Perdiguero, E. et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518, 547–551 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Gomez Perdiguero, E. et al. The origin of tissue-resident macrophages: when an erythro-myeloid progenitor is an erythro-myeloid progenitor. Immunity 43, 1023–1024 (2015).

    Article  CAS  Google Scholar 

  37. Hoeffel, G. & Ginhoux, F. Ontogeny of tissue-resident macrophages. Front. Immunol. 6, 486 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hoeffel, G. et al. C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 42, 665–678 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Perdiguero, E. G. & Geissmann, F. The development and maintenance of resident macrophages. Nat. Immunol. 17, 2–8 (2015).

    Article  CAS  Google Scholar 

  40. Varol, C., Mildner, A. & Jung, S. Macrophages: development and tissue specialization. Annu. Rev. Immunol. 33, 643–675 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Hashimoto, D. et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38, 792–804 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Jenkins, S. J. et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332, 1284–1288 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Davies, L. C. et al. A quantifiable proliferative burst of tissue macrophages restores homeostatic macrophage populations after acute inflammation. Eur. J. Immunol. 41, 2155–2164 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Davies, L. C. et al. Distinct bone marrow-derived and tissue-resident macrophage lineages proliferate at key stages during inflammation. Nat. Commun. 4, 1886 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Misharin, A. V. et al. Nonclassical Ly6C- monocytes drive the development of inflammatory arthritis in mice. Cell Rep. 9, 591–604 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Korns, D., Frasch, S. C., Fernandez-Boyanapalli, R., Henson, P. M. & Bratton, D. L. Modulation of macrophage efferocytosis in inflammation. Front. Immunol. 2, 57 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lebre, M. C. et al. Rheumatoid arthritis synovium contains two subsets of CD83DC-LAMP dendritic Cells with Distinct Cytokine Profiles. Am. J. Pathol. 172, 940–950 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Thomas, R. & Quinn, C. Functional differentiation of dendritic cells in rheumatoid arthritis: role of CD86 in the synovium. J. Immunol. 156, 3074–3086 (1996).

    CAS  PubMed  Google Scholar 

  49. Summers, K. L., O'Donnell, J. L., Williams, L. A. & Hart, D. N. Expression and function of CD80 and CD86 costimulator molecules on synovial dendritic cells in chronic arthritis. Arthritis Rheum. 39, 1287–1291 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Page, G., Lebecque, S. & Miossec, P. Anatomic localization of immature and mature dendritic cells in an ectopic lymphoid organ: correlation with selective chemokine expression in rheumatoid synovium. J. Immunol. 168, 5333–5341 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Radstake, T. R. et al. Increased FcγRII expression and aberrant tumour necrosis factor α production by mature dendritic cells from patients with active rheumatoid arthritis. Ann. Rheum. Dis. 63, 1556–1563 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Radstake, T. R. et al. Expression of Toll-like receptors 2 and 4 in rheumatoid synovial tissue and regulation by proinflammatory cytokines interleukin-12 and interleukin-18 via interferon-γ. Arthritis Rheum. 50, 3856–3865 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Ronnblom, L. & Alm, G. V. The natural interferon-α producing cells in systemic lupus erythematosus. Hum. Immunol. 63, 1181–1193 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. van der Pouw Kraan, T. C. et al. Rheumatoid arthritis subtypes identified by genomic profiling of peripheral blood cells: assignment of a type I interferon signature in a subpopulation of patients. Ann. Rheum. Dis. 66, 1008–1014 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Richez, C. et al. Myeloid dendritic cells correlate with clinical response whereas plasmacytoid dendritic cells impact autoantibody development in rheumatoid arthritis patients treated with infliximab. Arthritis Res. Ther. 11, R100 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Thomas, R., Davis, L. S. & Lipsky, P. E. Rheumatoid synovium is enriched in mature antigen-presenting dendritic cells. J. Immunol. 152, 2613–2623 (1994).

    CAS  PubMed  Google Scholar 

  57. Pettit, A. R., MacDonald, K. P., O'Sullivan, B. & Thomas, R. Differentiated dendritic cells expressing nuclear RelB are predominantly located in rheumatoid synovial tissue perivascular mononuclear cell aggregates. Arthritis Rheum. 43, 791–800 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Klareskog, L., Forsum, U., Scheynius, A., Kabelitz, D. & Wigzell, H. Evidence in support of a self-perpetuating HLA-DR-dependent delayed-type cell reaction in rheumatoid arthritis. Proc. Natl Acad. Sci. USA 79, 3632–3636 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jongbloed, S. L. et al. Enumeration and phenotypical analysis of distinct dendritic cell subsets in psoriatic arthritis and rheumatoid arthritis. Arthritis Res. Ther. 8, R15 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Remijsen, Q. et al. Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death Differ. 18, 581–588 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schauer, C. et al. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat. Med. 20, 511–517 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Pope, R. M. Apoptosis as a therapeutic tool in rheumatoid arthritis. Nat. Rev. Immunol. 2, 527–535 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Korb, A., Pavenstadt, H. & Pap, T. Cell death in rheumatoid arthritis. Apoptosis 14, 447–454 (2009).

    Article  PubMed  Google Scholar 

  64. Peter, M. E. et al. The CD95 receptor: apoptosis revisited. Cell 129, 447–450 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Green, D. R. Apoptotic pathways: the roads to ruin. Cell 94, 695–698 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Boatright, K. M., Deis, C., Denault, J. B., Sutherlin, D. P. & Salvesen, G. S. Activation of caspases-8 and -10 by FLIP(L). Biochem. J. 382, 651–657 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Micheau, O. et al. The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. J. Biol. Chem. 277, 45162–45171 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Luo, X., Budihardjo, I., Zou, H., Slaughter, C. & Wang, X. Bid, a Bcl-2 interacting protein mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481–490 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Li, P. et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Wang, K., Yin, X. M., Chao, D. T., Milliman, C. L. & Korsmeyer, S. J. BID, a novel BH3 domain only death agonist. Genes Dev. 10, 2859–2869 (1996).

    CAS  PubMed  Google Scholar 

  71. Firestein, G. S. Apoptosis in rheumatoid arthritis synovium. J. Clin. Invest. 96, 1631–1638 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nakajima, T. et al. Apoptosis and functional Fas antigen in rheumatoid arthritis synoviocytes. Arthritis Rheum. 38, 485–491 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. Hashmioto, H. et al. Soluble Fas ligand in the joints of patients with rheumatoid arthritis and osteoarthritis. Arthritis Rheum. 41, 657–662 (1998).

    Article  Google Scholar 

  74. Pundt, N. et al. Susceptibility of rheumatoid arthritis synovial fibroblasts to FasL- and TRAIL-induced apoptosis is cell cycle-dependent. Arthritis Res. Ther. 11, R16 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cantwell, M. J., Hua, T., Zvaifler, N. J. & Kipps, T. J. Deficient Fas ligand expression by synovial lymphocytes from patients with rheumatoid arthritis. Arthritis Rheum. 40, 1644–1652 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Wakisaka, S. et al. Modulation by proinflammatory cytokines of Fas/Fas ligand-mediated apoptotic cell death of synovial cells in patients with rheumatoid arthritis. Clin. Exp. Immunol. 114, 119–128 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kobayashi, T. et al. Differential regulation of Fas-mediated apoptosis of rheumatoid synoviocytes by tumor necrosis factor alpha and basic fibroblast growth factor is associated with the expression of apoptosis-related molecules. Arthritis Rheum. 43, 1106–1114 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Salmon, M. et al. Inhibition of T cell apoptosis in the rheumatoid synovium. J. Clin. Invest. 99, 439–446 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Migita, K. et al. Nitric oxide protects cultured rheumatoid synovial cells from Fas-induced apoptosis by inhibiting caspase-3. Immunology 103, 362–367 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cohen, P. L. & Eisenberg, R. A. Lpr and gld: single gene models of systemic autoimmunity and lymphoproliferative disease. Annu. Rev. Immunol. 9, 243–269 (1991).

    Article  CAS  PubMed  Google Scholar 

  81. Ito, M. R. et al. Rheumatic diseases in an MRL strain of mice with a deficit in the functional Fas ligand. Arthritis Rheum. 40, 1054–1063 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Cuda, C. M. et al. Requirement of myeloid cell-specific Fas expression for prevention of systemic autoimmunity in mice. Arthritis Rheum. 64, 808–820 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Richez, C., Blanco, P., Rifkin, I., Moreau, J. F. & Schaeverbeke, T. Role for toll-like receptors in autoimmune disease: the example of systemic lupus erythematosus. Joint Bone Spine 78, 124–130 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Brown, N. J. et al. Fas death receptor signaling represses monocyte numbers and macrophage activation in vivo. J. Immunol. 173, 7584–7593 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Ma, Y. et al. Fas ligation on macrophages enhances IL-1R1-Toll-like receptor 4 signaling and promotes chronic inflammation. Nat. Immunol. 380–387 (2004).

  86. Huang, Q. Q. et al. Fas signaling in macrophages promotes chronicity in K/BxN serum-induced arthritis. Arthritis Rheumatol. 66, 68–77 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Stranges, P. B. et al. Elimination of antigen-presenting cells and autoreactive T cells by Fas contributes to prevention of autoimmunity. Immunity 26, 629–641 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kobayashi, T. et al. Novel gene therapy for rheumatoid arthritis by FADD gene transfer: induction of apoptosis of rheumatoid synoviocytes but not chondrocytes. Gene Ther. 7, 527–533 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Tourneur, L., Mistou, S., Schmitt, A. & Chiocchia, G. Adenosine receptors control a new pathway of Fas-associated death domain protein expression regulation by secretion. J. Biol. Chem. 283, 17929–17938 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Berckmans, R. J. et al. Synovial microparticles from arthritic patients modulate chemokine and cytokine release by synoviocytes. Arthritis Res. Ther. 7, R536–544 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Vilmont, V., Tourneur, L. & Chiocchia, G. Fas-associated death domain protein and adenosine partnership: fad in RA. Rheumatology (Oxford) 51, 964–975 (2012).

    Article  CAS  Google Scholar 

  92. Schock, S. N., Young, J. A., He, T. H., Sun, Y. & Winoto, A. Deletion of FADD in macrophages and granulocytes results in RIP3- and MyD88-dependent systemic inflammation. PLoS ONE 10, e0124391 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Young, J. A., He, T. H., Reizis, B. & Winoto, A. Commensal microbiota are required for systemic inflammation triggered by necrotic dendritic cells. Cell Rep. 3, 1932–1944 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Perlman, H. et al. Rheumatoid arthritis synovial macrophages express the Fas-associated death domain-like interleukin-1β-converting enzyme-inhibitory protein and are refractory to Fas-mediated apoptosis. Arthritis Rheum. 44, 21–30 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Catrina, A. I., Ulfgren, A. K., Lindblad, S., Grondal, L. & Klareskog, L. Low levels of apoptosis and high FLIP expression in early rheumatoid arthritis synovium. Ann. Rheum. Dis. 61, 934–936 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Schedel, J. et al. FLICE-inhibitory protein expression in synovial fibroblasts and at sites of cartilage and bone erosion in rheumatoid arthritis. Arthritis Rheum. 46, 1512–1518 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Perlman, H. et al. FLICE-inhibitory protein expression during macrophage differentiation confers resistance to fas-mediated apoptosis. J. Exp. Med. 190, 1679–1688 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Huang, Q. Q. et al. FLIP: a novel regulator of macrophage differentiation and granulocyte homeostasis. Blood 116, 4968–4977 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gordy, C., Pua, H., Sempowski, G. D. & He, Y. W. Regulation of steady-state neutrophil homeostasis by macrophages. Blood 117, 618–629 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Huang, Q. Q. et al. CD11c-mediated deletion of Flip promotes autoreactivity and inflammatory arthritis. Nat. Commun. 6, 7086 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Wu, Y. J. et al. Cellular FLIP inhibits myeloid cell activation by suppressing selective innate signaling. J. Immunol. 195, 2612–2623 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Kamada, N. & Nunez, G. Regulation of the immune system by the resident intestinal bacteria. Gastroenterology 146, 1477–1488 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Kabat, A. M., Srinivasan, N. & Maloy, K. J. Modulation of immune development and function by intestinal microbiota. Trends Immunol. 35, 507–517 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lukens, J. R. et al. Dietary modulation of the microbiome affects autoinflammatory disease. Nature 516, 246–249 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506, 376–381 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Helfer, B. et al. Caspase-8 promotes cell motility and calpain activity under nonapoptotic conditions. Cancer Res. 66, 4273–4278 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Dohrman, A. et al. Cellular FLIP (long form) regulates CD8+ T cell activation through caspase-8-dependent NF-kappa B activation. J. Immunol. 174, 5270–5278 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Rajput, A. et al. RIG-I RNA helicase activation of IRF3 transcription factor is negatively regulated by caspase-8-mediated cleavage of the RIP1 protein. Immunity 34, 340–351 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Kovalenko, A. et al. Caspase-8 deficiency in epidermal keratinocytes triggers an inflammatory skin disease. J. Exp. Med. 206, 2161–2177 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hu, W. H., Johnson, H. & Shu, H. B. Activation of NF-kappaB by FADD, Casper, and caspase-8. J. Biol. Chem. 275, 10838–10844 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Sears, N., Sen, G. C., Stark, G. R. & Chattopadhyay, S. Caspase-8-mediated cleavage inhibits IRF-3 protein by facilitating its proteasome-mediated degradation. J. Biol. Chem. 286, 33037–33044 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cuda, C. M. et al. Conditional deletion of caspase-8 in macrophages alters macrophage activation in a RIPK-dependent manner. Arthritis Res. Ther. 17, 291 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kang, T. B. et al. Caspase-8 serves both apoptotic and nonapoptotic roles. J. Immunol. 173, 2976–2984 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Cuda, C. M. et al. Caspase-8 acts as a molecular rheostat to limit RIPK1- and MyD88-mediated dendritic cell activation. J. Immunol. 192, 5548–5560 (2014).

    Article  CAS  PubMed  Google Scholar 

  115. Kang, T. B., Yang, S. H., Toth, B., Kovalenko, A. & Wallach, D. Caspase-8 blocks kinase RIPK3-mediated activation of the NLRP3 inflammasome. Immunity 38, 27–40 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Adams, J. M. & Cory, S. The Bcl-2 protein family: arbiters of cell survival. Science 281, 1322–1326 (1998).

    Article  CAS  PubMed  Google Scholar 

  117. Delbridge, A. R. & Strasser, A. The BCL-2 protein family, BH3-mimetics and cancer therapy. Cell Death Differ. 22, 1071–1080 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Opferman, J. T. Attacking cancer's Achilles heel: antagonism of anti-apoptotic BCL-2 family members. FEBS J. http://dx.doi.org/10.1111/febs.13472 (2015).

  119. Perlman, H. et al. Bcl-2 expression in synovial fibroblasts is essential for maintaining mitochondrial homeostasis and cell viability. J. Immunol. 164, 5227–5235 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. Busteed, S. et al. Bcl-x(L) expression in vivo in rheumatoid synovium. Clin. Rheumatol 25 789–793 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Liu, H. et al. Regulation of Mcl-1 expression in rheumatoid arthritis synovial macrophages. Arthritis Rheum. 54, 3174–3181 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Liu, H. et al. Mcl-1 is essential for the survival of synovial fibroblasts in rheumatoid arthritis. J. Immunol. 175, 8337–8345 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Cha, H. S., Rosengren, S., Boyle, D. L. & Firestein, G. S. PUMA regulation and proapoptotic effects in fibroblast-like synoviocytes. Arthritis Rheum. 54, 587–592 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Hilbers, I. et al. Expression of the apoptosis accelerator Bax in rheumatoid arthritis synovium. Rheumatol Int. 23, 75–81 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Scatizzi, J. C. et al. Bim-Bcl-2 homology 3 mimetic therapy is effective at suppressing inflammatory arthritis through the activation of myeloid cell apoptosis. Arthritis Rheum. 62, 441–451 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zheng, B. et al. Overexpression of Bcl(XL) in B cells promotes TH1 response and exacerbates collagen-induced arthritis. J. Immunol. 179, 7087–7092 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Chen, Y., Rosloniec, E., Price, J., Boothby, M. & Chen, J. Constitutive expression of BCL-X(L) in the T lineage attenuates collagen-induced arthritis in Bcl-X(L) transgenic mice. Arthritis Rheum. 46, 514–521 (2002).

    Article  CAS  PubMed  Google Scholar 

  128. Lawlor, K. E. et al. Bcl-2 overexpression ameliorates immune complex-mediated arthritis by altering FcγRIIb expression and monocyte homeostasis. J. Leukocyte Biol. 93, 585–597 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Bardwell, P. D. et al. The Bcl-2 family antagonist ABT-737 significantly inhibits multiple animal models of autoimmunity. J. Immunol. 182, 7482–7489 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Lawlor, K. E., Smith, S. D., van Nieuwenhuijze, A., Huang, D. C. & Wicks, I. P. Evaluation of the Bcl-2 family antagonist ABT-737 in collagen-induced arthritis. J. Leukocyte Biol. 90, 819–829 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Scatizzi, J. C. et al. Bim deficiency leads to exacerbation and prolongation of joint inflammation in experimental arthritis. Arthritis Rheum. 54, 3182–3193 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Scatizzi, J. C. et al. Pro-apoptotic Bid is required for the resolution of the effector phase of inflammatory arthritis. Arthritis Res. Ther. 9, R49 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Bouillet, P. et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286, 1735–1738 (1999).

    Article  CAS  PubMed  Google Scholar 

  134. Hutcheson, J. et al. Combined deficiency of proapoptotic regulators Bim and Fas results in the early onset of systemic autoimmunity. Immunity 28, 206–217 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Hutcheson, J. & Perlman, H. BH3-only proteins in rheumatoid arthritis: potential targets for therapeutic intervention. Oncogene 27 (Suppl. 1), S168–S175 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Egle, A., Harris, A. W., Bath, M. L., O'Reilly, L. & Cory, S. VavP-Bcl2 transgenic mice develop follicular lymphoma preceded by germinal center hyperplasia. Blood 103, 2276–2283 (2003).pii] (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Zhou, P. et al. MCL1 transgenic mice exhibit a high incidence of B-cell lymphoma manifested as a spectrum of histologic subtypes. Blood 97, 3902–3909 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Zhou, P. et al. Mcl-1 in transgenic mice promotes survival in a spectrum of hematopoietic cell types and immortalization in the myeloid lineage. Blood 92, 3226–3239 (1998).

    CAS  PubMed  Google Scholar 

  139. Chen, M., Huang, L. & Wang, J. Deficiency of Bim in dendritic cells contributes to over-activation of lymphocytes and autoimmunity. Blood 109, 4360–4367 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Gautier, E. L. et al. Enhanced dendritic cell survival attenuates lipopolysaccharide-induced immunosuppression and increases resistance to lethal endotoxic shock. J. Immunol. 180, 6941–6946 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Nopora, A. & Brocker, T. Bcl-2 controls dendritic cell longevity in vivo. J. Immunol. 169, 3006–3014 (2002).

    Article  CAS  PubMed  Google Scholar 

  142. Hou, W. S. & Van Parijs, L. A. Bcl-2-dependent molecular timer regulates the lifespan and immunogenicity of dendritic cells. Nat. Immunol. 5, 583–589 (2004).

    Article  CAS  PubMed  Google Scholar 

  143. Yeretssian, G. et al. Non-apoptotic role of BID in inflammation and innate immunity. Nature 474, 96–99 (2011).

    Article  CAS  PubMed  Google Scholar 

  144. Pasparakis, M. & Vandenabeele, P. Necroptosis and its role in inflammation. Nature 517, 311–320 (2015).

    Article  CAS  PubMed  Google Scholar 

  145. Oberst, A. et al. Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471, 363–367 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Feoktistova, M. et al. cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol. Cell 43, 449–463 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Vince, J. E. et al. Inhibitor of apoptosis proteins limit RIP3 kinase-dependent interleukin-1 activation. Immunity 36, 215–227 (2012).

    Article  CAS  PubMed  Google Scholar 

  148. Gurung, P. et al. FADD and Caspase-8 Mediate Priming and Activation of the Canonical and Noncanonical Nlrp3 Inflammasomes. J. Immunol. 192, 1835–1846 (2014).

    Article  CAS  PubMed  Google Scholar 

  149. Shenderov, K. et al. Cutting edge: endoplasmic reticulum stress licenses macrophages to produce mature IL-1β in response to TLR4 stimulation through a caspase 8- and TRIF-dependent pathway. J. Immunol. 192, 2029–2033 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. Zhang, H. et al. Functional complementation between FADD and RIP1 in embryos and lymphocytes. Nature 471, 373–376 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Newton, K., Sun, X. & Dixit, V. M. Kinase RIP3 is dispensable for normal NF-kappa Bs, signaling by the B-cell and T-cell receptors, tumor necrosis factor receptor 1, and Toll-like receptors 2 and 4. Mol. Cell. Biol. 24, 1464–1469 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kaiser, W. J. et al. RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471, 368–372 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Dillon, C. P. et al. Survival function of the FADD-CASPASE-8-cFLIP(L) complex. Cell Rep. 1, 401–407 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Lawlor, K. E. et al. RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nat. Commun. 6, 6282 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. Lattuada, D. et al. Proapoptotic activity of a monomeric smac mimetic on human fibroblast-like synoviocytes from patients with rheumatoid arthritis. Inflammation 38, 102–109 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. Deveraux, Q. L. et al. IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J. 17, 2215–2223 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Du, C., Fang, M., Li, Y., Li, L. & Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42 (2000).

    Article  CAS  PubMed  Google Scholar 

  158. Verhagen, A. M. et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43–53 (2000).

    Article  CAS  PubMed  Google Scholar 

  159. Shin, Y. J. et al. Autophagy induction and CHOP under-expression promotes survival of fibroblasts from rheumatoid arthritis patients under endoplasmic reticulum stress. Arthritis Res. Ther. 12, R19 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Xu, K. et al. Reduced apoptosis correlates with enhanced autophagy in synovial tissues of rheumatoid arthritis. Inflamm Res. 62, 229–237 (2013).

    Article  CAS  PubMed  Google Scholar 

  161. Kato, M., Ospelt, C., Gay, R. E., Gay, S. & Klein, K. Dual role of autophagy in stress-induced cell death in rheumatoid arthritis synovial fibroblasts. Arthritis Rheumatol. 66, 40–48 (2014).

    Article  CAS  PubMed  Google Scholar 

  162. Buckland, J. Rheumatoid arthritis: Autophagy: a dual role in the life and death of RASFs. Nat. Rev. Rheumatol 9, 637 (2013).

    Article  PubMed  Google Scholar 

  163. Allan, L. A. & Clarke, P. R. Apoptosis and autophagy: Regulation of caspase-9 by phosphorylation. FEBS J. 276, 6063–6073 (2009).

    Article  CAS  PubMed  Google Scholar 

  164. Cronstein, B. N. Low-dose methotrexate: a mainstay in the treatment of rheumatoid arthritis. Pharmacol. Rev. 57, 163–172 (2005).

    Article  CAS  PubMed  Google Scholar 

  165. Nakazawa, F. et al. Methotrexate inhibits rheumatoid synovitis by inducing apoptosis. J. Rheumatol 28, 1800–1808 (2001).

    CAS  PubMed  Google Scholar 

  166. Smith, M. D. et al. Apoptosis in the rheumatoid arthritis synovial membrane: modulation by disease-modifying anti-rheumatic drug treatment. Rheumatology (Oxford) 49, 862–875 (2010).

    Article  CAS  Google Scholar 

  167. Xu, K. et al. Autophagy induction contributes to the resistance to methotrexate treatment in rheumatoid arthritis fibroblast-like synovial cells through high mobility group box chromosomal protein 1. Arthritis Res. Ther. 17, 374 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Yang, Z., Fujii, H., Mohan, S. V., Goronzy, J. J. & Weyand, C. M. Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells. J. Exp. Med. 210, 2119–2134 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ireland, J. M. & Unanue, E. R. Autophagy in antigen-presenting cells results in presentation of citrullinated peptides to CD4 T cells. J. Exp. Med. 208, 2625–2632 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Wegner, N. et al. Autoimmunity to specific citrullinated proteins gives the first clues to the etiology of rheumatoid arthritis. Immunol. Rev. 233, 34–54 (2010).

    Article  CAS  PubMed  Google Scholar 

  171. Lin, N. Y. et al. Autophagy regulates TNFalpha-mediated joint destruction in experimental arthritis. Ann. Rheum. Dis. 72, 761–768 (2013).

    Article  CAS  PubMed  Google Scholar 

  172. Onuora, S. Bone research: Autophagy is central to joint destruction in arthritis. Nat. Rev. Rheumatol 8, 633 (2012).

    Article  PubMed  Google Scholar 

  173. Yan, H., Zhou, H. F., Hu, Y. & Pham, C. T. Suppression of experimental arthritis through AMP-activated protein kinase activation and autophagy modulation. J. Rheum. Dis. Treat. 1, 5 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Orozco, G. et al. Study of the common genetic background for rheumatoid arthritis and systemic lupus erythematosus. Ann. Rheum. Dis. 70, 463–468 (2011).

    Article  PubMed  Google Scholar 

  175. Hampe, J. et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet. 39, 207–211 (2007).

    Article  CAS  PubMed  Google Scholar 

  176. Palomino-Morales, R. J. et al. Association of ATG16L1 and IRGM genes polymorphisms with inflammatory bowel disease: a meta-analysis approach. Genes Immun. 10, 356–364 (2009).

    Article  CAS  PubMed  Google Scholar 

  177. Lubberts, E., Koenders, M. I. & van den Berg, W. B. The role of T-cell interleukin-17 in conducting destructive arthritis: lessons from animal models. Arthritis Res. Ther. 7, 29–37 (2005).

    Article  CAS  PubMed  Google Scholar 

  178. Nakae, S., Nambu, A., Sudo, K. & Iwakura, Y. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J. Immunol. 171, 6173–6177 (2003).

    Article  CAS  PubMed  Google Scholar 

  179. Luross, J. A. & Williams, N. A. The genetic and immunopathological processes underlying collagen-induced arthritis. Immunology 103, 407–416 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Wenink, M. H., Han, W., Toes, R. E. & Radstake, T. R. Dendritic cells and their potential implication in pathology and treatment of rheumatoid arthritis. Handb Exp. Pharmacol. 188, 81–98 (2009).

    Article  CAS  Google Scholar 

  181. Kelchtermans, H. et al. Effector mechanisms of interleukin-17 in collagen-induced arthritis in the absence of interferon-gamma and counteraction by interferon-gamma. Arthritis Res. Ther. 11, R122 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Billiau, A. & Matthys, P. Collagen-induced arthritis and related animal models: how much of their pathogenesis is auto-immune, how much is auto-inflammatory? Cytokine Growth Factor Rev. 22, 339–344 (2011).

    Article  CAS  PubMed  Google Scholar 

  183. Genovese, M. C. et al. Efficacy and safety of secukinumab in patients with rheumatoid arthritis: a phase II, dose-finding, double-blind, randomised, placebo controlled study. Ann. Rheum. Dis. 72, 863–869 (2013).

    Article  CAS  PubMed  Google Scholar 

  184. Matsumoto, I., Staub, A., Benoist, C. & Mathis, D. Arthritis provoked by linked T and B cell recognition of a glycolytic enzyme. Science 286, 1732–1735 (1999).

    Article  CAS  PubMed  Google Scholar 

  185. Bevaart, L., Vervoordeldonk, M. J. & Tak, P. P. Evaluation of therapeutic targets in animal models of arthritis: how does it relate to rheumatoid arthritis? Arthritis Rheum. 62, 2192–2205 (2010).

    Article  CAS  PubMed  Google Scholar 

  186. Ji, H. et al. Arthritis critically dependent on innate immune system players. Immunity 16, 157–168 (2002).

    Article  CAS  PubMed  Google Scholar 

  187. Korganow, A. S. et al. From systemic T cell self-reactivity to organ-specific autoimmune disease via immunoglobulins. Immunity 10, 451–461 (1999).

    Article  CAS  PubMed  Google Scholar 

  188. Maccioni, M. et al. Arthritogenic monoclonal antibodies from K/BxN mice. J. Exp. Med. 195, 1071–1077 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Corr, M. & Crain, B. The role of FcγR signaling in the K/B x N serum transfer model of arthritis. J. Immunol. 169, 6604–6609 (2002).

    Article  CAS  PubMed  Google Scholar 

  190. Ji, H. et al. Critical roles for interleukin 1 and tumor necrosis factor alpha in antibody-induced arthritis. J. Exp. Med. 196, 77–85 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Manganelli, P. & Fietta, P. Apoptosis and Sjogren syndrome. Semin. Arthritis Rheum. 33, 49–65 (2003)

    Article  CAS  PubMed  Google Scholar 

  192. Zhu, A. et al. Fas/FasL, Bcl2 and Caspase-8 gene polymorphisms in Chinese patients with rheumatoid arthritis. Rheumatol. Int. 36, 807–818 (2016).

    Article  CAS  PubMed  Google Scholar 

  193. Anaya, J. M., Mantilla, R. D. & Correa, P. A. Immunogenetics of primary Sjogren's syndrome in Colombians. Semin. Arthritis Rheum. 34, 735–743 (2005).

    Article  CAS  PubMed  Google Scholar 

  194. Delgado-Vega, A. M. et al. Bcl-2 antagonist killer 1 (BAK1) polymorphisms influence the risk of developing autoimmune rheumatic diseases in women. Ann. Rheum. Dis. 69, 462–465 (2010).

    Article  CAS  PubMed  Google Scholar 

  195. Kollek, M., Muller, A., Egle, A. & Erlacher, M. Bcl-2 proteins in development, health and disease of the hematopoietic system. FEBS J. http://dx.doi.org/10.1111/febs.13683 (2016).

  196. Ogilvy, S. et al. Constitutive Bcl-2 expression throughout the hematopoietic compartment affects multiple lineages and enhances progenitor cell survival. Proc. Natl Acad. Sci. USA 96, 14943–14948 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Fang, W. et al. Frequent aberrant immunoglobulin gene rearrangements in pro-B cells revealed by a Bcl-xL transgene. Immunity 4, 291–299 (1996).

    Article  CAS  PubMed  Google Scholar 

  198. Chao, D. T. & Korsmeyer, S. J. BCL-XL-regulated apoptosis in T cell development. Int. Immunol. 9, 1375–1384 (1997).

    Article  CAS  PubMed  Google Scholar 

  199. Bonilla, D. L. et al. Autophagy regulates phagocytosis by modulating the expression of scavenger receptors. Immunity 39, 537–547 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the NIH to C.M.C. (K01AR064313), R.M.P. (AR065076, AR067687) and H.P. (AR064546, AR050250, AR054796, AI092490, HL108795), and funds provided to R.M.P. from the Pfizer Aspire award and to H.P. by the Solovy-Arthritis Research Society Chair in Medicine.

Author information

Authors and Affiliations

Authors

Contributions

C.C. researched data for the article. All authors substantially contributed to discussion of content, and reviewed/edited the manuscript before submission. C.C. and H.P. wrote the article.

Corresponding authors

Correspondence to Carla M. Cuda or Harris Perlman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Apoptosis

A process of programmed cell death

Phagocytosis

A process by which a cell engulfs bacteria, parasites, dead host cells and cellular and foreign debris.

Efferocytosis

A process similar to, yet distinct from, phagocytosis, whereby phagocytes engulf and eliminate apoptotic cells to promote the resolution of inflammation.

Splenomegaly

Abnormal enlargement of the spleen.

Lymphadenopathy

A disease characterized by abnormal size, number or consistency of lymph nodes.

Hypergammaglobulinaemia

A condition characterized by increased levels of immunoglobulins in the blood serum.

Glomerulonephritis

Acute inflammation of the kidney, typically caused by an immune response.

Proteinuria

The presence of abnormal quantities of proteins in the urine, which might indicate damage to the kidneys.

Necroptosis

A programmed form of necrosis or inflammatory cell death.

Citrullination

The conversion of the amino acid arginine within a protein to the amino acid citrulline.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuda, C., Pope, R. & Perlman, H. The inflammatory role of phagocyte apoptotic pathways in rheumatic diseases. Nat Rev Rheumatol 12, 543–558 (2016). https://doi.org/10.1038/nrrheum.2016.132

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2016.132

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing