Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Glucocorticoid-induced osteoporosis: who to treat with what agent?

Key Points

  • Glucocorticoid use is associated with an increase in fracture risk that can begin early in the course of therapy, linked with both daily and cumulative dose

  • Reduced bone formation and increased cortical porosity are key pathogenetic features of glucocorticoid-induced osteoporosis (GIOP)

  • The underlying disease also contributes to bone loss and increased fracture risk in glucocorticoid-treated patients

  • Early, preventive anti-osteoporosis measures, based on FRAX®-related intervention thresholds, are recommended for patients receiving chronic glucocorticoid therapy

  • Lifestyle and nutritional measures advocated for patients with GIOP are identical to those for patients with primary osteoporosis

  • Pharmacological anti-osteoporotic therapy could be stopped upon withdrawal of glucocorticoids unless the patient remains at increased risk of fracture

Abstract

Among the adverse events of glucocorticoid treatment are bone loss and fractures. Despite available, effective preventive measures, many patients receiving or initiating glucocorticoid therapy are not appropriately evaluated and treated for bone health and fracture risk. Populations with, or at risk of, glucocorticoid-induced osteoporosis (GIOP) to target for these measures are defined on the basis of dose and duration of glucocorticoid therapy and bone mineral density. That patients with GIOP should be treated as early as possible is generally agreed upon; however, diversity remains in intervention thresholds and management guidelines. The FRAX® algorithm provides a 10-year probability of fracture that can be adjusted according to glucocorticoid dose. There is no evidence that GIOP and postmenopausal osteoporosis respond differently to treatments. Available anti-osteoporotic therapies such as anti-resorptives including bisphosphonates and the bone anabolic agent teriparatide are effective for the management of GIOP. Prevention with calcium and vitamin D supplementation is less effective than specific anti-osteoporotic treatment. Anti-osteoporotic treatment should be stopped at the time of glucocorticoid cessation, unless the patient remains at increased risk of fracture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Physiopathology of GIOP in inflammatory diseases.

Similar content being viewed by others

References

  1. van Staa, T. P. et al. Use of oral corticosteroids in the United Kingdom. QJM 93, 105–111 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Walsh, L. J., Wong, C. A., Pringle, M. & Tattersfield, A. E. Use of oral corticosteroids in the community and the prevention of secondary osteoporosis: a cross sectional study. BMJ 313, 344–346 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Diez-Perez, A. et al. Regional differences in treatment for osteoporosis. The Global Longitudinal Study of Osteoporosis in Women (GLOW). Bone 49, 493–498 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Overman, R. A., Yeh, J. Y. & Deal, C. L. Prevalence of oral glucocorticoid usage in the United States: a general population perspective. Arthritis Care Res. (Hoboken) 65, 294–298 (2013).

    Article  Google Scholar 

  5. Gudbjornsson, B., Juliusson, U. I. & Gudjonsson, F. V. Prevalence of long term steroid treatment and the frequency of decision making to prevent steroid induced osteoporosis in daily clinical practice. Ann. Rheum. Dis. 61, 32–36 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. van Staa, T. P., Leufkens, H. G. & Cooper, C. The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos. Int. 13, 777–787 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Kanis, J. A. et al. A meta-analysis of prior corticosteroid use and fracture risk. J. Bone Miner. Res. 19, 893–899 (2004).

    Article  PubMed  Google Scholar 

  8. van Staa, T. P., Leufkens, H. G., Abenhaim, L., Zhang, B. & Cooper, C. Oral corticosteroids and fracture risk: relationship to daily and cumulative doses. Rheumatology (Oxford) 39, 1383–1389 (2000).

    Article  CAS  Google Scholar 

  9. Steinbuch, M., Youket, T. E. & Cohen, S. Oral glucocorticoid use is associated with an increased risk of fracture. Osteoporos. Int. 15, 323–328 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. van Staa, T. P., Leufkens, H. G. & Cooper, C. Does a fracture at one site predict later fractures at other sites? A British cohort study. Osteoporos. Int. 13, 624–629 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Canalis, E., Mazziotti, G., Giustina, A. & Bilezikian, J. P. Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos. Int. 18, 1319–1328 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. van Staa, T. P., Leufkens, H. G., Abenhaim, L., Zhang, B. & Cooper, C. Use of oral corticosteroids and risk of fractures. J. Bone Miner. Res. 15, 993–1000 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. van Staa, T. P., Leufkens, H. G. & Cooper, C. Use of inhaled corticosteroids and risk of fractures. J. Bone Miner. Res. 16, 581–588 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Leib, E. S. et al. Official positions for FRAX® clinical regarding glucocorticoids: the impact of the use of glucocorticoids on the estimate by FRAX® of the 10 year risk of fracture from Joint Official Positions Development Conference of the International Society for Clinical Densitometry and International Osteoporosis Foundation on FRAX®. J. Clin. Densitom. 14, 212–219 (2011).

    Article  PubMed  Google Scholar 

  15. Etminan, M., Sadatsafavi, M., Ganjizadeh Zavareh, S., Takkouche, B. & FitzGerald, J. M. Inhaled corticosteroids and the risk of fractures in older adults: a systematic review and meta-analysis. Drug Saf. 31, 409–414 (2008).

    Article  PubMed  Google Scholar 

  16. van Staa, T. P., Bishop, N., Leufkens, H. G. & Cooper, C. Are inhaled corticosteroids associated with an increased risk of fracture in children? Osteoporos. Int. 15, 785–791 (2004).

    Article  PubMed  CAS  Google Scholar 

  17. Loke, Y. K., Cavallazzi, R. & Singh, S. Risk of fractures with inhaled corticosteroids in COPD: systematic review and meta-analysis of randomised controlled trials and observational studies. Thorax 66, 699–708 (2011).

    Article  PubMed  Google Scholar 

  18. Bijlsma, J. W., Duursma, S. A., Bosch, R., Raymakers, J. A. & Huber-Bruning, O. Acute changes in calcium and bone metabolism during methylprednisolone pulse therapy in rheumatoid arthritis. Br. J. Rheumatol. 27, 215–219 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. Bijlsma, J. W., Duursma, S. A. & Huber-Bruning, O. Bone metabolism during methylprednisolone pulse therapy in rheumatoid arthritis. Ann. Rheum. Dis. 45, 757–760 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. van der Veen, M. J. & Bijlsma, J. W. Effects of different regimes of corticosteroid treatment on calcium and bone metabolism in rheumatoid arthritis. Clin. Rheumatol. 11, 388–392 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. McEvoy, C. E. et al. Association between corticosteroid use and vertebral fractures in older men with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 157, 704–709 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. De Vries, F. et al. Fracture risk with intermittent high-dose oral glucocorticoid therapy. Arthritis Rheum. 56, 208–214 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Leonard, M. B. et al. Long-term, high-dose glucocorticoids and bone mineral content in childhood glucocorticoid-sensitive nephrotic syndrome. N. Engl. J. Med. 351, 868–875 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Kanis, J. A., Stevenson, M., McCloskey, E. V., Davis, S. & Lloyd-Jones, M. Glucocorticoid-induced osteoporosis: a systematic review and cost-utility analysis. Health Technol. Assess. 11, 1–231 (2007).

    Article  Google Scholar 

  25. Compston, J. Management of glucocorticoid-induced osteoporosis. Nat. Rev. Rheumatol. 6, 82–88 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Vestergaard, P., Rejnmark, L. & Mosekilde, L. Fracture risk associated with different types of oral corticosteroids and effect of termination of corticosteroids on the risk of fractures. Calcif. Tissue Int. 82, 249–257 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Weinstein, R. S. Clinical practice. Glucocorticoid-induced bone disease. N. Engl. J. Med. 365, 62–70 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Ton, F. N., Gunawardene, S. C., Lee, H. & Neer, R. M. Effects of low-dose prednisone on bone metabolism. J. Bone Miner. Res. 20, 464–470 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Hayashi, K. et al. BMP/Wnt antagonists are upregulated by dexamethasone in osteoblasts and reversed by alendronate and PTH: potential therapeutic targets for glucocorticoid-induced osteoporosis. Biochem. Biophys. Res. Commun. 379, 261–266 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Yao, W. et al. Glucocorticoid excess in mice results in early activation of osteoclastogenesis and adipogenesis and prolonged suppression of osteogenesis: a longitudinal study of gene expression in bone tissue from glucocorticoid-treated mice. Arthritis Rheum. 58, 1674–1686 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. den Uyl, D., Bultink, I. E. & Lems, W. F. Advances in glucocorticoid-induced osteoporosis. Curr. Rheumatol. Rep. 13, 233–240 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Hofbauer, L. C. & Rauner, M. Minireview: live and let die: molecular effects of glucocorticoids on bone cells. Mol. Endocrinol. 23, 1525–1531 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wijenayaka, A. R. et al. Sclerostin stimulates osteocyte support of osteoclast activity by a RANKL-dependent pathway. PLoS ONE 6, e25900 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. O'Brien, C. A., Nakashima, T. & Takayanagi, H. Osteocyte control of osteoclastogenesis. Bone 54, 258–263 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Weinstein, R. S., Jilka, R. L., Parfitt, A. M. & Manolagas, S. C. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J. Clin. Invest. 102, 274–282 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kroger, H., Honkanen, R., Saarikoski, S. & Alhava, E. Decreased axial bone mineral density in perimenopausal women with rheumatoid arthritis—a population based study. Ann. Rheum. Dis. 53, 18–23 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Roux, C. Are glucocorticoids really deleterious to bone health? Joint Bone Spine 78 (Suppl. 2), S211–S213 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Vedi, S., Elkin, S. L. & Compston, J. E. A histomorphometric study of cortical bone of the iliac crest in patients treated with glucocorticoids. Calcif. Tissue Int. 77, 79–83 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Zebaze, R. M. et al. Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet 375, 1729–1736 (2010).

    Article  PubMed  Google Scholar 

  40. Compston, J. E. Emerging consensus on prevention and treatment of glucocorticoid-induced osteoporosis. Curr. Rheumatol. Rep. 9, 78–84 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Saag, K. G. et al. Trends in prevention of glucocorticoid-induced osteoporosis. J. Rheumatol. 33, 1651–1657 (2006).

    PubMed  Google Scholar 

  42. Majumdar, S. R. et al. Population-based trends in osteoporosis management after new initiations of long-term systemic glucocorticoids (1998–2008). J. Clin. Endocrinol. Metab. 97, 1236–1242 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Overman, C. L. et al. Change of psychological distress and physical disability in patients with rheumatoid arthritis over the last two decades. Arthritis Care Res. (Hoboken) 66, 671–678 (2014).

    Article  Google Scholar 

  44. Grossman, J. M. et al. American College of Rheumatology 2010 recommendations for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Care Res. (Hoboken) 62, 1515–1526 (2010).

    Article  Google Scholar 

  45. Lekamwasam, S. et al. A framework for the development of guidelines for the management of glucocorticoid-induced osteoporosis. Osteoporos. Int. 23, 2257–2276 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Compston, J. et al. Recommendations for the registration of agents for prevention and treatment of glucocorticoid-induced osteoporosis: an update from the Group for the Respect of Ethics and Excellence in Science. Osteoporos. Int. 19, 1247–1250 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. WHO Collaborating Centre for Metabolic Bone Diseases. FRAX®: WHO Fracture Risk Assessment Tool [online], (2014).

  48. Kanis, J. A., Johnell, O., Oden, A., Johansson, H. & McCloskey, E. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos. Int. 19, 385–397 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kanis, J. A. et al. Case finding for the management of osteoporosis with FRAX®—assessment and intervention thresholds for the UK. Osteoporos. Int. 19, 1395–1408 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Kanis, J. A., Johansson, H., Oden, A. & McCloskey, E. V. Guidance for the adjustment of FRAX according to the dose of glucocorticoids. Osteoporos. Int. 22, 809–816 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Pereira, R. M. et al. Guidelines for the prevention and treatment of glucocorticoid-induced osteoporosis. Rev. Bras. Reumatol. 52, 580–593 (2012).

    Article  PubMed  Google Scholar 

  52. National Osteoporosis Foundation. Clinician's guide to prevention and treatment of osteoporosis (National Osteoporosis Foundation, Washington DC, 2014).

  53. Cohen, S. et al. Risedronate therapy prevents corticosteroid-induced bone loss: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, parallel-group study. Arthritis Rheum. 42, 2309–2318 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Saag, K. G. et al. Alendronate for the prevention and treatment of glucocorticoid-induced osteoporosis. Glucocorticoid-Induced Osteoporosis Intervention Study Group. N. Engl. J. Med. 339, 292–299 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Wallach, S. et al. Effects of risedronate treatment on bone density and vertebral fracture in patients on corticosteroid therapy. Calcif. Tissue Int. 67, 277–285 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Langdahl, B. L. et al. Teriparatide versus alendronate for treating glucocorticoid-induced osteoporosis: an analysis by gender and menopausal status. Osteoporos. Int. 20, 2095–2104 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Losada, I. et al. Bisphosphonates in patients with autoimmune rheumatic diseases: can they be used in women of childbearing age? Autoimmun. Rev. 9, 547–552 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. van Staa, T. P. et al. Bone density threshold and other predictors of vertebral fracture in patients receiving oral glucocorticoid therapy. Arthritis Rheum. 48, 3224–3229 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Cooper, C., Dennison, E. M., Leufkens, H. G., Bishop, N. & van Staa, T. P. Epidemiology of childhood fractures in Britain: a study using the general practice research database. J. Bone Miner. Res. 19, 1976–1981 (2004).

    Article  PubMed  Google Scholar 

  60. Bianchi, M. L. Glucocorticoids and bone: some general remarks and some special observations in pediatric patients. Calcif. Tissue Int. 70, 384–390 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Marini, J. C. Do bisphosphonates make children's bones better or brittle? N. Engl. J. Med. 349, 423–426 (2003).

    Article  PubMed  Google Scholar 

  62. Dore, R. K. How to prevent glucocorticoid-induced osteoporosis. Cleve. Clin. J. Med. 77, 529–536 (2010).

    Article  PubMed  Google Scholar 

  63. Inoue, Y. et al. Efficacy of intravenous alendronate for the treatment of glucocorticoid-induced osteoporosis in children with autoimmune diseases. Clin. Rheumatol. 27, 909–912 (2008).

    Article  PubMed  Google Scholar 

  64. Nakhla, M. et al. Bioavailability and short-term tolerability of alendronate in glucocorticoid-treated children. Clin. Ther. 33, 1516–1523 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Ward, L. et al. Bisphosphonate therapy for children and adolescents with secondary osteoporosis. Cochrane Database of Systematic Reviews 2007, Issue 4, Art. No.: CD005324. http://dx.doi.org/10.1002/14651858.CD005324.pub2.

  66. Compston, J. Clinical question: what is the best approach to managing glucocorticoid-induced osteoporosis? Clin. Endocrinol. (Oxf.) 74, 547–550 (2011).

    Article  CAS  Google Scholar 

  67. Devogelaer, J. P. et al. Evidence-based guidelines for the prevention and treatment of glucocorticoid-induced osteoporosis: a consensus document of the Belgian Bone Club. Osteoporos. Int. 17, 8–19 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Bischoff-Ferrari, H. A. et al. Fall prevention with supplemental and active forms of vitamin D: a meta-analysis of randomised controlled trials. BMJ 339, b3692 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Amin, S., LaValley, M. P., Simms, R. W. & Felson, D. T. The role of vitamin D in corticosteroid-induced osteoporosis: a meta-analytic approach. Arthritis Rheum. 42, 1740–1751 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Homik, J. et al. Calcium and vitamin D for corticosteroid-induced osteoporosis. Cochrane Database of Systematic Reviews 1998, Issue 2, Art. No.: CD000952. http://dx.doi.org/10.1002/14651858.CD000952.

  71. Bolland, M. J., Grey, A. & Reid, I. R. Differences in overlapping meta-analyses of vitamin D supplements and falls. J. Clin. Endocrinol. Metab. http://dx.doi.org/10.1210/jc.2014-2562.

  72. de Nijs, R. N. et al. Alendronate or alfacalcidol in glucocorticoid-induced osteoporosis. N. Engl. J. Med. 355, 675–684 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. de Nijs, R. N., Jacobs, J. W., Algra, A., Lems, W. F. & Bijlsma, J. W. Prevention and treatment of glucocorticoid-induced osteoporosis with active vitamin D3 analogues: a review with meta-analysis of randomized controlled trials including organ transplantation studies. Osteoporos. Int. 15, 589–602 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Adachi, J. D. et al. Two-year effects of alendronate on bone mineral density and vertebral fracture in patients receiving glucocorticoids: a randomized, double-blind, placebo-controlled extension trial. Arthritis Rheum. 44, 202–211 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Shane, E. et al. Alendronate versus calcitriol for the prevention of bone loss after cardiac transplantation. N. Engl. J. Med. 350, 767–776 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Takeda, S., Kaneoka, H. & Saito, T. Effect of alendronate on glucocorticoid-induced osteoporosis in Japanese women with systemic autoimmune diseases: versus alfacalcidol. Mod. Rheumatol. 18, 271–276 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Hollick, R. J. & Reid, D. M. Role of bisphosphonates in the management of postmenopausal osteoporosis: an update on recent safety anxieties. Menopause Int. 17, 66–72 (2011).

    Article  PubMed  Google Scholar 

  78. Rizzoli, R. et al. Management of glucocorticoid-induced osteoporosis. Calcif. Tissue Int. 91, 225–243 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Sambrook, P. N. et al. Bisphosphonates and glucocorticoid osteoporosis in men: results of a randomized controlled trial comparing zoledronic acid with risedronate. Bone 50, 289–295 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Gluer, C. C. et al. Comparative effects of teriparatide and risedronate in glucocorticoid-induced osteoporosis in men: 18-month results of the EuroGIOPs trial. J. Bone Miner. Res. 28, 1355–1368 (2013).

    Article  PubMed  CAS  Google Scholar 

  81. Adachi, J. D. et al. Intermittent etidronate therapy to prevent corticosteroid-induced osteoporosis. N. Engl. J. Med. 337, 382–387 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Reid, D. M. et al. Efficacy and safety of daily risedronate in the treatment of corticosteroid-induced osteoporosis in men and women: a randomized trial. European Corticosteroid-Induced Osteoporosis Treatment Study. J. Bone Miner. Res. 15, 1006–1013 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Reid, D. M., Adami, S., Devogelaer, J. P. & Chines, A. A. Risedronate increases bone density and reduces vertebral fracture risk within one year in men on corticosteroid therapy. Calcif. Tissue Int. 69, 242–247 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Reid, D. M. et al. Zoledronic acid and risedronate in the prevention and treatment of glucocorticoid-induced osteoporosis (HORIZON): a multicentre, double-blind, double-dummy, randomised controlled trial. Lancet 373, 1253–1263 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Devogelaer, J. P. et al. Baseline glucocorticoid dose and bone mineral density response with teriparatide or alendronate therapy in patients with glucocorticoid-induced osteoporosis. J. Rheumatol. 37, 141–148 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Saag, K. G. et al. Teriparatide or alendronate in glucocorticoid-induced osteoporosis. N. Engl. J. Med. 357, 2028–2039 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Saag, K. G. et al. Effects of teriparatide versus alendronate for treating glucocorticoid-induced osteoporosis: thirty-six-month results of a randomized, double-blind, controlled trial. Arthritis Rheum. 60, 3346–3355 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Farahmand, P. et al. Early changes in biochemical markers of bone formation during teriparatide therapy correlate with improvements in vertebral strength in men with glucocorticoid-induced osteoporosis. Osteoporos. Int. 24, 2971–2981 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lane, N. E. et al. Parathyroid hormone treatment can reverse corticosteroid-induced osteoporosis. Results of a randomized controlled clinical trial. J. Clin. Invest. 102, 1627–1633 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Boutsen, Y., Jamart, J., Esselinckx, W., Stoffel, M. & Devogelaer, J. P. Primary prevention of glucocorticoid-induced osteoporosis with intermittent intravenous pamidronate: a randomized trial. Calcif. Tissue Int. 61, 266–271 (1997).

    Article  CAS  PubMed  Google Scholar 

  91. Boutsen, Y., Jamart, J., Esselinckx, W. & Devogelaer, J. P. Primary prevention of glucocorticoid-induced osteoporosis with intravenous pamidronate and calcium: a prospective controlled 1-year study comparing a single infusion, an infusion given once every 3 months, and calcium alone. J. Bone Miner. Res. 16, 104–112 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Ringe, J. D., Dorst, A., Faber, H., Ibach, K. & Sorenson, F. Intermittent intravenous ibandronate injections reduce vertebral fracture risk in corticosteroid-induced osteoporosis: results from a long-term comparative study. Osteoporos. Int. 14, 801–807 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Mok, C. C. et al. Raloxifene for prevention of glucocorticoid-induced bone loss: a 12-month randomised double-blinded placebo-controlled trial. Ann. Rheum. Dis. 70, 778–784 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Hofbauer, L. C. et al. Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells: potential paracrine mechanisms of glucocorticoid-induced osteoporosis. Endocrinology 140, 4382–4389 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Sivagurunathan, S., Muir, M. M., Brennan, T. C., Seale, J. P. & Mason, R. S. Influence of glucocorticoids on human osteoclast generation and activity. J. Bone Miner. Res. 20, 390–398 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Vidal, N. O., Brandstrom, H., Jonsson, K. B. & Ohlsson, C. Osteoprotegerin mRNA is expressed in primary human osteoblast-like cells: down-regulation by glucocorticoids. J. Endocrinol. 159, 191–195 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. Weinstein, R. S. et al. Osteoprotegerin prevents glucocorticoid-induced osteocyte apoptosis in mice. Endocrinology 152, 3323–3331 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nakashima, T. et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat. Med. 17, 1231–1234 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Xiong, J. et al. Matrix-embedded cells control osteoclast formation. Nat. Med. 17, 1235–1241 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cohen, S. B. et al. Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum. 58, 1299–1309 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Dore, R. K. et al. Effects of denosumab on bone mineral density and bone turnover in patients with rheumatoid arthritis receiving concurrent glucocorticoids or bisphosphonates. Ann. Rheum. Dis. 69, 872–875 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Jia, J. et al. Glucocorticoid dose determines osteocyte cell fate. FASEB J. 25, 3366–3376 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Stoch, S. A. & Wagner, J. A. Cathepsin K inhibitors: a novel target for osteoporosis therapy. Clin. Pharmacol. Ther 83, 172–176 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Eisman, J. A. et al. Odanacatib in the treatment of postmenopausal women with low bone mineral density: three-year continued therapy and resolution of effect. J. Bone Miner. Res. 26, 242–251 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. van Lierop, A. H., Hamdy, N. A. & Papapoulos, S. E. Glucocorticoids are not always deleterious for bone. J. Bone Miner. Res. 25, 2796–2800 (2010).

    Article  PubMed  CAS  Google Scholar 

  106. Gerber, A. N., Masuno, K. & Diamond, M. I. Discovery of selective glucocorticoid receptor modulators by multiplexed reporter screening. Proc. Natl Acad. Sci. USA 106, 4929–4934 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rauch, A. et al. An anti-inflammatory selective glucocorticoid receptor modulator preserves osteoblast differentiation. FASEB J. 25, 1323–1332 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Bone and Tooth Society of Great Britain, National Osteoporosis Society, Royal College of Physicians. Glucocorticoid-induced osteoporosis: guidelines for prevention and treatment (RCP, London, 2002).

  109. Geusens, P. P. et al. Prevention of glucocorticoid osteoporosis: a consensus document of the Dutch Society for Rheumatology. Ann. Rheum. Dis. 63, 324–325 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Nawata, H. et al. Guidelines on the management and treatment of glucocorticoid-induced osteoporosis of the Japanese Society for Bone and Mineral Research (2004). J. Bone Miner. Metab. 23, 105–109 (2005).

    Article  PubMed  Google Scholar 

  111. Dachverband Osteologie. DVO guideline 2009 for prevention, diagnosis and therapy of osteoporosis in adults. Osteologie 20, 55–74 (2011).

  112. Papaioannou, A. et al. 2010 clinical practice guidelines for the diagnosis and management of osteoporosis in Canada: summary. CMAJ 182, 1864–1873 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Compston, J. et al. Diagnosis and management of osteoporosis in postmenopausal women and older men in the UK: National Osteoporosis Guideline Group (NOGG) update 2013. Maturitas 75, 392–396 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. No authors listed. Actualisation 2012 des recommandations françaises du traitement médicamenteux de l'ostéoporose po-ménopausique [online]

Download references

Acknowledgements

The authors thank K. Giroux for her secretarial assistance.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to researching data for the article, made substantial contributions to discussion of content, writing and reviewing/editing of the manuscript before submission.

Corresponding author

Correspondence to René Rizzoli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizzoli, R., Biver, E. Glucocorticoid-induced osteoporosis: who to treat with what agent?. Nat Rev Rheumatol 11, 98–109 (2015). https://doi.org/10.1038/nrrheum.2014.188

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2014.188

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing