Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of crystal formation in gout—a structural approach

Key Points

  • Mechanisms of biomineralization—the physiological formation of mineral crystals to build structural tissues such as bone or mollusc shells—provide a framework for interpreting pathological crystal formation as occurs in gout

  • Crystal formation is more enery-efficient when it occurs on a complementary surface, particularly on the surface of another crystal, than in a supersaturated solution

  • Fibres found in synovial fluid show monosodium urate monohydrate (MSU) crystals deposit in an orderly way: crystals lie parallel to the fibres, forming transverse rows that follow the undulations of the fibres

  • In tophi, two forms of crystal formation occur: templated nucleation on tissue fibres and, probably later, secondary nucleation on previously formed crystals

  • Imaging findings suggest MSU crystal formation in tendons follows the direction of collagen fibres and probably occurs on them; moreover, entheses seem to support crystal deposit in tendons

Abstract

The mechanisms and sites of monosodium urate monohydrate (MSU) crystal deposition in gout have received little attention from the scientific community to date. Formalin fixation of tissues leads to the dissolution of MSU crystals, resulting in their absence from routinely processed pathological samples and hence neglect. However, modern imaging techniques—especially ultrasonography but also conventional CT and dual-energy CT—reveal that MSU crystals form at the cartilage surface as well as inside tendons and ligaments, often at insertion sites. Tophi comprise round white formations of different sizes surrounded by inflammatory tissue. Studies of fibres recovered from gouty synovial fluid indicate that these fibres are likely to be a primary site of crystal formation by templated nucleation, with crystals deposited parallel to the fibres forming transverse bands. In tophi, two areas can be distinguished: one where crystals are formed on cellular tissues and another consisting predominantly of crystals, where secondary nucleation seems to take place; this organization could explain how tophi can grow rapidly. From these observations based on a crystallographic approach, it seems that initial templated nucleation on structural fibres—probably collagen—followed at some sites by secondary nucleation could explain MSU crystal deposition in gout.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structure of an MSU crystal.
Figure 2: Ultrasonographic images of MSU crystal deposit in tendons.
Figure 3: Formations of MSU crystals in tophi.
Figure 4: Small fragments of tissue containing orderly crystal deposits found in synovial fluid samples from asymptomatic gouty joints.
Figure 5: Possible mechanisms of MSU crystal formation on cartilage tissue.
Figure 6: Area of a tophus where crystals appear on cellular tissues.
Figure 7: Tophus area predominantly containing crystals.

Similar content being viewed by others

References

  1. De Yoreo, J. J. & Vekilov, P. G. Principles of crystal nucleation and growth. Rev. Mineral Geochem. 54, 57–93 (2003).

    Article  CAS  Google Scholar 

  2. Dieppe, P. & Calvert, P. (eds). Crystals and Joint Diseases (Chapman & Hall, 1983).

    Google Scholar 

  3. Addadi, L. & Weiner, S. Control and design principles in biological mineralization. Angew. Chem. Int. Ed. Engl. 31, 153–169 (1992).

    Article  Google Scholar 

  4. Mann, S. et al. Crystallization at inorganic-organic interfaces: biominerals and biomimetic synthesis. Science 261, 1286–1292 (1993).

    Article  CAS  Google Scholar 

  5. Weiner, S. & Addadi, L. Crystallization pathways in biomineralization. Annu. Rev. Mater. Res. 41, 21–40 (2011).

    Article  CAS  Google Scholar 

  6. Addadi, L., Moradian, J., Shay, E., Maroudas, N. G. & Weiner, S. A chemical model for the cooperation of sulfates and carboxylates in calcite crystal nucleation: relevance to biomineralization. Proc. Natl Acad. Sci. USA 84, 2732–2736 (1987).

    Article  CAS  Google Scholar 

  7. Mandel, N. S. & Mandel, G. S. Monosodium urate monohydrate, the gout culprit. J. Am. Chem. Soc. 98, 2319–2323 (1976).

    Article  CAS  Google Scholar 

  8. Rinaudo, C. & Boistelle, R. Theoretical and experimental growth morphologies of sodium urate crystals. J. Cryst. Growth 57, 432–442 (1982).

    Article  CAS  Google Scholar 

  9. Perrin, C. M., Dobish, M. A., Van Keuren, E. & Swift, J. A. Monosodium urate monohydrate crystallization. Cryst. Eng. Comm. 13, 1111–1117 (2011).

    Article  CAS  Google Scholar 

  10. Simkin, P. A., Bassett, J. E. & Lee, Q. P. Not water, but formalin, dissolves urate crystals in tophaceous tissue samples. J. Rheumatol. 21, 2320–1 (1994).

    CAS  PubMed  Google Scholar 

  11. Dalbeth, N. et al. Cellular characterization of the gouty tophus: a quantitative analysis. Arthritis Rheum. 62, 1549–1556 (2010).

    Article  CAS  Google Scholar 

  12. Sokoloff, L. The pathology of gout. Metabolism 6, 230–243 (1957).

    CAS  PubMed  Google Scholar 

  13. Grassi, W., Meenagh, G., Pascual, E. & Filippucci, E. “Crystal clear”—sonographic assessment of gout and calcium pyrophosphate deposition disease. Semin. Arthritis Rheum. 36, 197–202 (2006).

    Article  CAS  Google Scholar 

  14. Baker, J. F. & Synnott, K. A. Clinical images: gout revealed on arthroscopy after minor injury. Arthritis Rheum. 62, 895 (2010).

    Article  Google Scholar 

  15. Pritzker, K. P., Zahn, C. E., Nyburg, S. C., Luk, S. C. & Houpt, J. B. The ultrastructure of urate crystals in gout. J. Rheumatol. 5, 7–18 (1978).

    CAS  PubMed  Google Scholar 

  16. Pritzker, K. P. Articular pathology of gout, calcium pyrophosphate dihidrate and basic calcium phosphate crystal deposition arthopathies. in Gout and Other Crystal Arthropathies (ed. Terkeltaub, R.) 1–19 (Elsevier Saunders, 2012).

    Google Scholar 

  17. Pineda, C. et al. Joint and tendon subclinical involvement suggestive of gouty arthritis in asymptomatic hyperuricemia: an ultrasound controlled study. Arthritis Res. Ther. 13, R4 (2011).

    Article  Google Scholar 

  18. De Miguel, E. et al. Diagnosis of gout in patients with asymptomatic hyperuricaemia: a pilot ultrasound study. Ann. Rheum. Dis. 71, 157–158 (2012).

    Article  Google Scholar 

  19. Howard, R. G. et al. Reproducibility of musculoskeletal ultrasound for determining monosodium urate deposition: concordance between readers. Arthritis Care Res. (Hoboken) 63, 1456–1462 (2011).

    Article  CAS  Google Scholar 

  20. McCarty, D. J. & Hollander, J. L. Identification of urate crystals in gouty synovial fluid. Ann. Intern. Med. 54, 452–60 (1961).

    Article  CAS  Google Scholar 

  21. Pascual, E. Persistence of monosodium urate crystals, and low grade inflammation, in the synovial fluid of untreated gout. Arthritis Rheum. 34, 141–145 (1991).

    Article  CAS  Google Scholar 

  22. Pascual, E. et al. Synovial fluid analysis for diagnosis of intercritical gout. Ann. Intern. Med. 131, 756–759 (1999).

    Article  CAS  Google Scholar 

  23. Weniger, F. G. et al. Gouty flexor tenosynovitis of the digits: report of three cases. J. Hand Surg. Am. 28, 669–672 (2003).

    Article  Google Scholar 

  24. Dalbeth, N. et al. Tendon involvement in the feet of patients with gout: a dual-energy CT study. Ann. Rheum. Dis. 72, 1545–1548 (2013).

    Article  Google Scholar 

  25. Benjamin, M. & McGonagle, D. Basic concepts of enthesis biology and immunology. J. Rheumatol. Suppl. 83, 12–13 (2009).

    Article  Google Scholar 

  26. Benjamin, M. & McGonagle, D. The anatomical basis for disease localisation in seronegative spondyloarthropathy at entheses and related sites. J. Anat. 199, 503–526 (2001).

    Article  CAS  Google Scholar 

  27. Gerster, J. C. et al. Enthesopathy and tendinopathy in gout: computed tomographic assessment. Ann. Rheum. Dis. 55, 921–923 (1996).

    Article  CAS  Google Scholar 

  28. Choi, H. K. et al. Dual energy computed tomography in tophaceous gout. Ann. Rheum. Dis. 68, 1609–1612 (2009).

    Article  CAS  Google Scholar 

  29. Bongartz, T. et al. Dual-energy CT for the diagnosis of gout: an accuracy and diagnostic yield study. Ann. Rheum. Dis. 74, 1072–1077 (2015).

    Article  CAS  Google Scholar 

  30. Gerster, J. C., Landry, M., Dufresne, L. & Meuwly, J. Y. Imaging of tophaceous gout: computed tomography provides specific images compared with magnetic resonance imaging and ultrasonography. Ann. Rheum. Dis. 61, 52–54 (2002).

    Article  CAS  Google Scholar 

  31. Pascual, E. & Ordóñez, S. Orderly arrayed deposit of urate crystals in gout suggest epitaxial formation. Ann. Rheum. Dis. 57, 255 (1998).

    Article  CAS  Google Scholar 

  32. Pascual, E., Martínez, A. & Ordóñez, S. Gout: the mechanism of urate crystal nucleation and growth. A hypothesis based in facts. Joint Bone Spine 80, 1–4 (2013).

    Article  CAS  Google Scholar 

  33. Roddy, E., Zhang, W. & Doherty, M. Are joints affected by gout also affected by osteoarthritis? Ann. Rheum. Dis. 66, 1374–1377 (2007).

    Article  Google Scholar 

  34. Pritzker, K. P. et al. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis Cartilage 14, 13–29 (2006).

    Article  CAS  Google Scholar 

  35. Jeffery, A. K., Blunn, G. W., Archer, C. W. & Bentley, G. Three-dimensional collagen architecture in bovine articular cartilage. J. Bone Joint Surg. Br. 73, 795–801 (1991).

    Article  CAS  Google Scholar 

  36. Fiechtner, J. J. & Simkin, P. A. Urate spherulites in gouty synovia. JAMA 245, 1533–1536 (1981).

    Article  CAS  Google Scholar 

  37. Brune, A. B. & Petuskey, W. T. Growth morphologies, fragmentation patterns, and hardness in sodium hydrogen urate monohydrate. MRS Proceedings http://dx.doi.org/10.1557/opl.2015.11.

  38. Vela, P. & Pascual, E. Images in clinical medicine. An unusual tophus. N. Engl. J. Med. 29, 372 (2015).

    Google Scholar 

  39. McQueen, F. M. et al. Bone erosions in patients with chronic gouty arthropathy are associated with tophi but not bone oedema or synovitis: new insights from a 3 T MRI study. Rheumatology (Oxford) 53, 95–103 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for article and made substantial contributions to discussion of content, writing and review/editing of manuscript before submission.

Corresponding author

Correspondence to Eliseo Pascual.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure Legends (DOCX 23 kb)

Supplementary Figure 1a

Formalin-fixed histological section of a tophus, where MSU crystals have disappeared. (TIFF 1218 kb)

Supplementary Figure 1b

Formalin-fixed histological section of a tophus, where MSU crystals have disappeared. (TIFF 1531 kb)

Supplementary Figure 2

CT scan of an elbow of a patient with tophaceous gout showing opaque MSU deposits. (TIFF 971 kb)

Supplementary Figure 3

Inflammation surrounding an area predominantly containing MSU crystals in a tophus. (TIFF 2441 kb)

Supplementary Figure 4a

Spherulitic formations in synovial fluid and synthetically formed MSU crystals. (TIFF 1403 kb)

Supplementary Figure 4b

Spherulitic formations in synovial fluid and synthetically formed MSU crystals. (TIFF 3693 kb)

Supplementary Figure 4c

Spherulitic formations in synovial fluid and synthetically formed MSU crystals. (PDF 1703 kb)

Supplementary Figure 5

Parallel bands of crystals at a predominantly crystal-containing site of a tophus indicates that crystals at these sites crystals are oriented and organized (TIFF 4361 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pascual, E., Addadi, L., Andrés, M. et al. Mechanisms of crystal formation in gout—a structural approach. Nat Rev Rheumatol 11, 725–730 (2015). https://doi.org/10.1038/nrrheum.2015.125

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2015.125

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing