Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Vasculitis: determinants of disease patterns

Key Points

  • Vessels are more than merely conduits for blood, nutrients, gas exchange and waste disposal

  • The dialogue between developing and mature vessels and their resident tissues determines organ form, function, specialization, vulnerability and capacity for repair

  • Vessels of the same size in different organs are not the same, reflecting specialized functions

  • Vessels are immunologically competent structures

  • As with other tissues, growth, development and ageing of vessels are associated with adaptations (and maladaptations) that modify their function and vulnerabilities

  • The unique features that define vascular diversity provide extraordinary opportunities to explore mechanisms responsible for unique disease patterns in different forms of vasculitis

Abstract

The vasculitides are a large group of heterogeneous diseases for which it has been assumed that pathogenesis is largely autoimmune. As clinicians, we distinguish one form of vasculitis from another on the basis of observed patterns of organ injury, the size of the vessels affected and histopathological findings. The terms 'small-vessel', 'medium-vessel' and 'large-vessel' vasculitis are useful clinical descriptors, but fail to inform us about why vessels of a certain calibre are favoured by one disease and not another. Classification based on vessel size also fails to consider that vessels of a specific calibre are not equally prone to injury. Distinct vulnerabilities undoubtedly relate to the fact that same-size vessels in different tissues may not be identical conduits. In fact, vessels become specialized, from the earliest stages of embryonic development, to suit the needs of different anatomical locations. Vessels of the same calibre in different locations and organs are as different as the organ parenchymal cells through which they travel. The dialogue between developing vessels and the tissues they perfuse is designed to meet special local needs. Added to the story of vascular diversity and vulnerability are changes that occur during growth, development and ageing. An improved understanding of the unique territorial vulnerabilities of vessels could form the basis of new hypotheses for the aetiopathogenesis of the vasculitides. This Review considers how certain antigens, including infectious agents, might become disease-relevant and how vascular diversity could influence disease phenotypes and the spectrum of vascular inflammatory diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Endothelial microvascular relationships in different organs.
Figure 2: Blood–brain barrier.
Figure 3: The renal microvascular structure and function varies with intrarenal location.
Figure 4: Developmental fate map for VSMCs.
Figure 5: Vessel-specific TLR gene expression profiles in human medium and large vessels.
Figure 6: Mice lacking IFN-γ or the IFN-γR inoculated with murine herpesvirus develop aortic root/arch site-specific aortitis.
Figure 7: HCV infection targeting the BBB.
Figure 8: Anti-GBM disease (Goodpasture syndrome) involves modification of native antigen.

Similar content being viewed by others

Yusuf Yazici, Gulen Hatemi, … Hasan Yazici

References

  1. Rocha, S. F. & Adams, R. H. Molecular differentiation and specialization of vascular beds. Angiogenesis 12, 139–147 (2009).

    Article  CAS  Google Scholar 

  2. Cleaver, O. & Melton, D. A. Endothelial signaling during development. Nat. Med. 9, 661–668 (2003).

    Article  CAS  Google Scholar 

  3. Carmeliet, P. Angiogenesis in life, disease and medicine. Nature 438, 932–936 (2005).

    Article  CAS  Google Scholar 

  4. Swift, M. R. & Weinstein, B. M. Arterial-venous specification during development. Circ. Res. 104, 576–588 (2009).

    Article  CAS  Google Scholar 

  5. Larrivée, B., Freitas, C., Suchting, S., Brunet, I. & Eichmann, A. Guidance of vascular development: lessons from the nervous system. Circ. Res. 104, 428–441 (2009).

    Article  Google Scholar 

  6. Ribatti, D., Nico, B. & Crivellato, E. Morphological and molecular aspects of physiological vascular morphogenesis. Angiogenesis 12, 101–111 (2009).

    Article  CAS  Google Scholar 

  7. Davis, G. E. & Senger, D. R. Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ. Res. 97, 1093–1107 (2005).

    Article  CAS  Google Scholar 

  8. Hallmann, R. et al. Expression and function of laminins in the embryonic and mature vasculature. Physiology Rev. 85, 979–1000 (2005).

    Article  CAS  Google Scholar 

  9. Stan, R. V. Endothelial stomatal and fenestral diaphragms in normal vessels and angiogenesis. J. Cell. Mol. Med. 11, 621–643 (2007).

    Article  CAS  Google Scholar 

  10. Pries, A. R. & Kuebler, W. M. Normal endothelium. Handbook Exptl Pharmacol. 176, 1–40 (2006).

    Google Scholar 

  11. Sá-Pereira, I., Brites, D. & Brito, M. A. Neurovascular unit: a focus on pericytes. Mol. Neurobiol. 45, 327–347 (2012).

    Article  Google Scholar 

  12. Molema, G. & Aird, W. C. Vascular heterogeneity in the kidney. Semin. Nephrol. 32, 145–155 (2012).

    Article  CAS  Google Scholar 

  13. Okuyama, K., Yaginuma, G., Takahashi, T., Sasaki, H. & Mori, S. The development of vasa vasorum of the human aorta in various conditions. A morphometric study. Arch. Pathol. Lab. Med. 112, 721–725 (1988).

    CAS  PubMed  Google Scholar 

  14. Margolin, D. A. et al. Differential monocytic cell adherence to specific anatomic regions of the canine aorta. J. Vasc. Res. 32, 266–274 (1995).

    Article  CAS  Google Scholar 

  15. Topouzis, S. & Majesky, M. W. Smooth muscle lineage diversity in the chick embryo: two types of aortic smooth muscle cell differ in growth and receptor-mediated transcriptional responses to transforming growth factor-β. Dev. Biol. 178, 430–445 (1996).

    Article  CAS  Google Scholar 

  16. Majesky, M. W. Developmental basis of vascular smooth muscle diversity. Arterioscler. Thromb. Vasc. Biol. 27, 1248–1258 (2007).

    Article  CAS  Google Scholar 

  17. Pryshchep, O., Ma-Krupa, W., Younge, B. R., Goronzy, J. J. & Weyand, C. M. Vessel-specific Toll-like receptor profiles in human medium and large arteries. Circulation 118, 1276–1284 (2008).

    Article  CAS  Google Scholar 

  18. Foster, T. J., Geoghegan, J. A., Ganesh, V. K. & Höök, M. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat. Rev. Microbiol. 12, 49–62 (2014).

    Article  CAS  Google Scholar 

  19. Vengadesan, K. & Narayana, V. L. Structural biology of Gram-positive bacterial adhesins. Protein Sci. 20, 759–772 (2011).

    Article  CAS  Google Scholar 

  20. Belouzard, S., Millet, J. K., Licitra, B. N. & Whittaker, G. R. Mechanisms of Coronavirus cell entry mediated by the viral spike protein. Viruses 4, 1011–1033 (2012).

    Article  CAS  Google Scholar 

  21. Cuperus, T., Coorens M, van Dijk, A. & Haagsman, H. P. Avian host defense peptides. Dev. Comp. Immunol. 41, 352–369 (2013).

    Article  CAS  Google Scholar 

  22. Zhao, L. & Lu, W. Defensins in innate immunity. Curr. Opin. Hematol. 21, 37–42 (2014).

    Article  CAS  Google Scholar 

  23. Guillevin, L. Infections in vasculitis. Best Pract. Res. Clin. Rheumatol. 27, 19–31 (2013).

    Article  Google Scholar 

  24. Calabrese, L. H. Infection with the human immunodeficiency virus type 1 and vascular inflammatory disease. Clin. Exp. Rheumatol. 22 (Suppl. 36), S87–S93 (2004).

    CAS  PubMed  Google Scholar 

  25. Weck, K. E. et al. Murine γ-herpesvirus 68 causes severe large-vessel arteritis in mice lacking interferon-γ responsiveness: a new model for virus-induced vascular disease. Nat. Med. 3, 1346–1353 (1997).

    Article  CAS  Google Scholar 

  26. Presti, R. M., Pollock, J. L., Dal Canto, A. J., O'Guin, A. K. & Virgin, H. W. Interferon γ regulates acute and latent murine cytomegalovirus infection and chronic disease of the great vessels. J. Exp. Med. 188, 577–588 (1998).

    Article  CAS  Google Scholar 

  27. Dal Canto, A. J., Swanson, P. E., O'Guin, A. K., Speck, S. H. & Virgin, H. W. IFN-γ action in the media of the great elastic arteries, a novel immunoprivileged site. J. Clin. Invest. 107, R15–R22 (2001).

    Article  CAS  Google Scholar 

  28. Agnello, V., Chung, R. T. & Kaplan, L. M. A role for hepatitis C virus infection in type II cryoglobulinemia. N. Engl. J. Med. 327, 1490–1495 (1992).

    Article  CAS  Google Scholar 

  29. Antonelli, A. et al. Serum concentrations of interleukin 1β, CXCL10, and interferon-γ in mixed cryoglobulinemia associated with hepatitis C infection. J. Rheumatol. 37, 91–97 (2013).

    Article  Google Scholar 

  30. Sansonno, D. & Dammacco, F. Hepatitis C virus, cryoglobulinaemia, and vasculitis: immune complex relations. Lancet Infect. Dis. 5, 227–236 (2005).

    Article  Google Scholar 

  31. Fabrizi, F. et al. Hepatitis C virus infection, mixed cryoglobulinemia, and kidney disease. Am. J. Kidney Dis. 61, 623–637 (2013).

    Article  Google Scholar 

  32. Cacoub, P., Terrier, B. & Saadoun, D. Hepatitis C virus-induced vasculitis: therapeutic options. Ann. Rheum. Dis. 73, 24–30 (2014).

    Article  CAS  Google Scholar 

  33. Ferri, C. et al. HCV-related autoimmune and neoplastic disorders: the HCV syndrome. Dig. Liver Dis. 39 (Suppl. 1), S13–S21 (2007).

    Article  Google Scholar 

  34. Saadoun, D. et al. Hepatitis C virus-associated polyarteritis nodosa. Arthritis Care Res. (Hoboken) 63, 427–435 (2011).

    CAS  Google Scholar 

  35. Zeisel, M. B., Felmlee, D. J. & Baumert, T. F. Hepatitis C viral entry. Curr. Topics Microbiol. Immunol. 369, 86–112 (2013).

    Google Scholar 

  36. Catanese, M. T. et al. Different requirements for scavenger receptor class B type I in hepatitis C virus cell-free versus cell-to-cell transmission. J. Virol. 87, 8282–8293 (2013).

    Article  CAS  Google Scholar 

  37. Ferri, C., Zignego, A. L. & Pileri, S. A. Cryoglobulins. J. Clin. Pathol. 55, 4–13 (2002).

    Article  CAS  Google Scholar 

  38. Alpers, C. E. & Smith, K. D. Cryoglobulinemia and renal disease. Curr. Opin. Nephrol. Hypertens. 17, 243–249 (2008).

    Article  Google Scholar 

  39. Gorevic, P. D. Rheumatoid factor, complement, and mixed cryoglobulinemia. Clin. Dev. Immunol. 2012, 439018 (2012).

    Article  Google Scholar 

  40. Sansonno, D. et al. Increased serum levels of the chemokine CXCL13 and up-regulation of its gene expression are distinctive features of HCV-related cryoglobulinemia and correlate with active cutaneous vasculitis. Blood 112, 1620–1627 (2008).

    Article  CAS  Google Scholar 

  41. Sansonno, D. B. et al. Role of the receptor for the globular domain of C1q protein in the pathogenesis of hepatitis C virus-related cryoglobulin vascular damage. J. Immunol. 183, 6013–6020 (2009).

    Article  CAS  Google Scholar 

  42. Dammacco, F. & Sansonno, D. Therapy for hepatitis C virus-related cryoglobulinemic vasculitis. N. Engl. J. Med. 369, 1035–1045 (2013).

    Article  CAS  Google Scholar 

  43. Fabrizi, F. et al. Biological dynamics of hepatitis B virus load in dialysis population. Am. J. Kidney Dis. 41, 1278–1285 (2003).

    Article  Google Scholar 

  44. Fornasieri, A. & D'Amico, G. Type II mixed cryoglobulinaemia, hepatitis C virus infection, and glomerulonephritis. Nephrol. Dial. Transplant. 11 (Suppl. 4), 25–30 (1996).

    Article  Google Scholar 

  45. Cacoub, P. et al. Anti-endothelial cell auto-antibodies in hepatitis C virus mixed cryoglobulinemia. J. Hepatol. 31, 598–603 (1999).

    Article  CAS  Google Scholar 

  46. Barsoum, R. S. Hepatitis C virus: from entry to renal injury—facts and potentials. Nephrol. Dial. Transplant. 22, 1840–1848 (2007).

    Article  Google Scholar 

  47. Sansonno, D. et al. Hepatitis C virus RNA and core protein in kidney glomerular and tubular structures isolated with laser capture microdissection. Clin. Exp. Immunol. 140, 498–506 (2005).

    Article  CAS  Google Scholar 

  48. Saadoun, D. et al. Involvement of chemokines and type 1 cytokines in the pathogenesis of hepatitis C virus-associated mixed cryoglobulinemia vasculitis neuropathy. Arthritis Rheum. 52, 2917–2925 (2005).

    Article  CAS  Google Scholar 

  49. Wornle, M. et al. Novel role of Toll-like receptor 3 in hepatitis C-associated glomerulonephritis. Am. J. Pathol. 168, 370–385 (2006).

    Article  Google Scholar 

  50. Authier, F. J. et al. Detection of genomic viral RNA in nerve and muscle of patients with HCV neuropathy. Neurology 60, 808–812 (2003).

    Article  Google Scholar 

  51. Fletcher, N. F. et al. Hepatitis C virus infects the endothelial cells of the blood–brain barrier. Gastroenterology 142, 634–643 (2012).

    Article  CAS  Google Scholar 

  52. Forton, D. M., Karayiannis, P., Mahmud, N., Taylor-Robinson, S. D. & Thomas, H. C. Identification of unique hepatitis C virus quasispecies in the central nervous system and comparative analysis of internal translational efficiency of brain, liver, and serum variants. J. Virol. 78, 5170–5183 (2004).

    Article  CAS  Google Scholar 

  53. Sabahi, A. Hepatitis C virus entry: the early steps in the viral replication cycle. Virol. J. 6, 117 (2009).

    Article  Google Scholar 

  54. Feray, C. Is HCV infection a neurologic disorder? Gastroenterology 142, 428–431 (2012).

    Article  Google Scholar 

  55. Burlone, M. E. & Budkowska, A. Hepatitis C virus cell entry: role of lipoproteins and cellular receptors. J. Gen. Virol. 90, 1055–1070 (2009).

    Article  CAS  Google Scholar 

  56. Wilkinson, J., Radkowski, M. & Laskus, T. Hepatitis C virus neuroinvasion: identification of infected cells. J. Virol. 83, 1312–1319 (2009).

    Article  CAS  Google Scholar 

  57. Fletcher, N. F. et al. Activated macrophages promote hepatitis C virus entry in a tumor necrosis factor-dependent manner. Hepatology 59, 1320–1330 (2014).

    Article  CAS  Google Scholar 

  58. Jia, X. Y., Cui, Z., Yang, R., Hu, S. Y. & Zhao, M. H. Antibodies against linear epitopes on the Goodpasture autoantigen and kidney injury. Clin. J. Am. Soc. Nephrol. 7, 926–933 (2012).

    Article  CAS  Google Scholar 

  59. Vanacore, R., Pedchenko, V., Bhave, G. & Hudson, B. G. Sulphilimine cross-links in Goodpasture's disease. Clin. Exp. Immunol. 164, 4–6 (2011).

    Article  CAS  Google Scholar 

  60. Peto, P. & Salama, A. D. Update on antiglomerular basement membrane disease. Curr. Opin. Rheumatol. 23, 32–37 (2011).

    Article  Google Scholar 

  61. Ooi, J. D. et al. The HLA-DRB1*15:01-restricted Goodpasture's T cell epitope induces GN. J. Am. Soc. Nephrol. 24, 419–431 (2013).

    Article  CAS  Google Scholar 

  62. Doyle, H. A. & Mamula, M. J. Autoantigenesis: the evolution of protein modifications in autoimmune disease. Curr. Opin. Immunol. 24, 112–118 (2012).

    Article  CAS  Google Scholar 

  63. Hernández-Rodriguez, J. et al. Vasculitis involving the breast: a clinical and histological analysis of 34 patients. Medicine (Baltimore) 87, 61–69 (2008).

    Article  Google Scholar 

  64. Hernández-Rodríguez, J., Tan, C. D., Rodríguez, R. E. & Hoffman, G. S. Gynecologic vasculitis: an analysis of 163 patients. Medicine (Baltimore) 88, 169–181 (2009).

    Article  Google Scholar 

  65. Hernández-Rodríguez, J. & Hoffman, G. S. Updating single-organ vasculitis. Curr. Opin. Rheumatol. 24, 38–45 (2012).

    Article  Google Scholar 

  66. Jennette, J. C. et al. Revised International Chapel Hill Consensus Conference nomenclature of vasculitides. Arthritis Rheum. 65, 1–11 (2013).

    Article  CAS  Google Scholar 

  67. Falk, R. J. & Hoffman, G. S. Controversies in small vessel vasculitis—comparing rheumatology and nephrology views. Curr. Opin. Rheumatol. 19, 1–9 (2007).

    PubMed  Google Scholar 

  68. Sablé-Fourtassou, R. et al. Antineutrophil cytoplasm antibodies and the Churg–Strauss syndrome. Ann. Intern. Med. 143, 632–638 (2005).

    Article  Google Scholar 

  69. Sinico, R. A. et al. Prevalence and clinical significance of antineutrophil cytoplasmic antibodies in Churg–Strauss syndrome. Arthritis Rheum. 52, 2926–2935 (2005).

    Article  CAS  Google Scholar 

  70. Ribatti, D., Nico, B., Vacca, A., Roncali, L. & Dammacco, F. Endothelial cell heterogeneity and organ specificity. J. Hematother. Stem Cell Res. 11, 81–90 (2002).

    Article  Google Scholar 

  71. Mohan, S., Liao, Y., Kim, J., Goronzy, J. & Weyand, C. Giant cell arteritis: immune and vascular aging as disease risk factors. Arthritis Res. Ther. 13, 231 (2011).

    Article  CAS  Google Scholar 

  72. Maksimowicz-McKinnon, K., Clark, T. M. & Hoffman, G. S. Takayasu arteritis and giant cell arteritis: a spectrum within the same disease? Medicine (Baltimore) 88, 221–226 (2009).

    Article  Google Scholar 

  73. Grayson, P. C. et al. Distribution of arterial lesions in Takayasu's arteritis and giant cell arteritis. Ann. Rheum. Dis. 71, 1329–1334 (2012).

    Article  Google Scholar 

  74. Zivkovic, S. A., Clemens, P. R. & Lacomis, D. Characteristics of late-onset myasthenia gravis. J. Neurol. 259, 2167–2171 (2012).

    Article  Google Scholar 

  75. Aarli, J. A. Myasthenia gravis in the elderly: is it different? Ann. N. Y. Acad. Sci. 1132, 238–243 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

G.S.H. has received partial research support from the Harold C. Schott Foundation and the Konigsberg Family Fund for Vasculitis Research. L.H.C. is in part supported by the R. J. Fasenmyer Foundation.

Author information

Authors and Affiliations

Authors

Contributions

G.S.H. conceived the article's content, researched data for the article, wrote the first draft and reviewed/edited the manuscript before submission. L.H.C. researched data for and wrote the section on viral-associated vasculitis.

Corresponding author

Correspondence to Gary S. Hoffman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoffman, G., Calabrese, L. Vasculitis: determinants of disease patterns. Nat Rev Rheumatol 10, 454–462 (2014). https://doi.org/10.1038/nrrheum.2014.89

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2014.89

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing