Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neural mechanisms underlying the pain of juvenile idiopathic arthritis

Key Points

  • Pain is the most common and distressing symptom of juvenile idiopathic arthritis (JIA) and can persist despite good disease control

  • Effective pain management in patients with JIA will benefit from an understanding of the special features of pain processing in the juvenile nervous system

  • Persistent pain is maintained by functional changes in the peripheral and central nervous systems, which depend upon age at onset

  • Animal models show that exposure to injury, pain and stress in early life 'primes' the pain system, such that adult tissue injury and inflammation is more painful

  • Effective age-appropriate treatment of JIA pain is therefore probably of lifelong benefit

Abstract

Pain is the most common symptom of juvenile idiopathic arthritis (JIA) and is arguably a more important factor in disability than the progression of the disease itself. Studies have highlighted the extent of this pain and its persistence in some young patients despite effective disease control. Understandingand effective management of pain in JIA is limited, and improved diagnosis and treatment would benefit from increased knowledge of the mechanisms underlying pain in childhood. This Review focuses upon the developmental neurobiology of pain, reviewing studies in animal models that increase clinical understanding and inform treatment of the painful manifestations of JIA. Pain processing in the juvenile nervous system differs from that in adults: nociceptive thresholds are lower and endogenous pain control systems are slow to mature. Furthermore, increasing evidence points to tissue injury in childhood having prolonged effects upon the developing pain system. Injury, inflammation and stress in early life can 'prime' peripheral nociceptors and central pain circuits, such that the pain associated with tissue inflammation is exacerbated in later life. A developmental, mechanism-based approach towards developing novel targets for the treatment of pain in JIA might therefore benefit the patient both as a child and as an adult if the disease recurs or persists.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects on the pain pathway of joint inflammation in early life.

Similar content being viewed by others

References

  1. Duffy, C. M. Health outcome in pediatric rheumatic diseases. Curr. Opin. Rheumatol. 16, 102–108 (2004).

    Article  PubMed  Google Scholar 

  2. Kimura, Y. & Walco, G. A. Treatment of chronic pain in pediatric rheumatic disease. Nat. Clin. Pract. Rheumatol. 3, 210–218 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Valrie, C. R., Bromberg, M. H., Palermo, T. & Schanberg, L. E. A systematic review of sleep in pediatric pain populations. J. Dev. Behav. Pediatr. 34, 120–128 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Oen, K. et al. Radiologic outcome and its relationship to functional disability in juvenile rheumatoid arthritis. J. Rheumatol. 30, 832–840 (2003).

    PubMed  Google Scholar 

  5. Dhanani, S., Quenneville, J., Perron, M., Abdolell, M. & Feldman, B. M. Minimal difference in pain associated with change in quality of life in children with rheumatic disease. Arthritis Rheum. 47, 501–505 (2002).

    Article  PubMed  Google Scholar 

  6. Kuis, W. et al. Pain in childhood rheumatic arthritis. Baillières Clin. Rheumatol. 12, 229–244 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Malleson, P. & Clinch, J. Pain syndromes in children. Curr. Opin. Rheumatol. 15, 572–580 (2003).

    Article  PubMed  Google Scholar 

  8. Lomholt, J. J., Thastum, M. & Herlin, T. Pain experience in children with juvenile idiopathic arthritis treated with anti-TNF agents compared to non-biologic standard treatment. Pediatr. Rheumatol. Online J. 11, 21 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Consolaro, A. & Ravelli, A. Paediatric rheumatology: juvenile idiopathic arthritis—are biologic agents effective for pain? Nat. Rev. Rheumatol. 9, 447–448 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Schanberg, L. E., Lefebvre, J. C., Keefe, F. J., Kredich, D. W. & Gil, K. M. Pain coping and the pain experience in children with juvenile chronic arthritis. Pain 73, 181–189 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Packham, J. C. & Hall, M. A. Long-term follow-up of 246 adults with juvenile idiopathic arthritis: functional outcome. Rheumatology (Oxford) 41, 1428–1435 (2002).

    Article  CAS  Google Scholar 

  12. Minden, K. et al. Long-term outcome in patients with juvenile idiopathic arthritis. Arthritis Rheum. 46, 2392–2401 (2002).

    Article  PubMed  Google Scholar 

  13. Minden, K. et al. Long-term outcome of patients with JIA treated with etanercept, results of the biologic register JuMBO. Rheumatology 51, 1407–1415 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Giannini, E. H. et al. Preliminary definition of improvement in juvenile arthritis. Arthritis Rheum. 40, 1202–1209 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Consolaro, A. et al. Development and initial validation of composite parent- and child-centered disease assessment indices for juvenile idiopathic arthritis. Arthritis Care Res. 63, 1262–1270 (2011).

    Article  Google Scholar 

  16. McErlane, F., Beresford, M. W., Baildam, E. M., Thomson, W. & Hyrich, K. L. Recent developments in disease activity indices and outcome measures for juvenile idiopathic arthritis. Rheumatology (Oxford) 52, 1941–1951 (2013).

    Article  Google Scholar 

  17. Stinson, J. N., Luca, N. J. C. & Jibb, L. A. Assessment and management of pain in juvenile idiopathic arthritis. Pain Res. Manag. 17, 391–396 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ravelli, A. et al. Discordance between proxy-reported and observed assessment of functional ability of children with juvenile idiopathic arthritis. Rheumatology (Oxford) 40, 914–919 (2001).

    Article  CAS  Google Scholar 

  19. Garcia-Munitis, P. et al. Level of agreement between children, parents, and physicians in rating pain intensity in juvenile idiopathic arthritis. Arthritis Rheum. 55, 177–183 (2006).

    Article  PubMed  Google Scholar 

  20. Consolaro, A. et al. Physicians' and parents' ratings of inactive disease are frequently discordant in juvenile idiopathic arthritis. J. Rheumatol. 34, 1773–1776 (2007).

    PubMed  Google Scholar 

  21. Truckenbrodt, H. Pain in juvenile chronic arthritis: consequences for the musculo-skeletal system. Clin. Exp. Rheumatol. 11 (Suppl. 9), S59–S63 (1993).

    PubMed  Google Scholar 

  22. Anthony, K. K. & Schanberg, L. E. Assessment and management of pain syndromes and arthritis pain in children and adolescents. Rheum. Dis. Clin. North Am. 33, 625–660 (2007).

    Article  PubMed  Google Scholar 

  23. Clinch, J. & Eccleston, C. Chronic musculoskeletal pain in children: assessment and management. Rheumatology (Oxford) 48, 466–474 (2009).

    Article  Google Scholar 

  24. Wager, J. et al. Classifying the severity of paediatric chronic pain—an application of the chronic pain grading. Eur. J. Pain 17, 1393–1402 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Lovell, D. J. et al. Measuring process of arthritis care: a proposed set of quality measures for the process of care in juvenile idiopathic arthritis. Arthritis Care Res. 63, 10–16 (2011).

    Article  Google Scholar 

  26. Backonja, M. M. et al. Value of quantitative sensory testing in neurological and pain disorders: NeuPSIG consensus. Pain 154, 1807–1819 (2013).

    Article  PubMed  Google Scholar 

  27. Blankenburg, M. et al. Reference values for quantitative sensory testing in children and adolescents: developmental and gender differences of somatosensory perception. Pain 149, 76–88 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Blankenburg, M. et al. Developmental and sex differences in somatosensory perception—a systematic comparison of 7- versus 14-year-olds using quantitative sensory testing. Pain 152, 2625–2631 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Hirschfeld, G. et al. Development of somatosensory perception in children: a longitudinal QST-study. Neuropediatrics 43, 10–16 (2012).

    Article  PubMed  Google Scholar 

  30. Brandow, A. M., Stucky, C. L., Hillery, C. A., Hoffmann, R. G. & Panepinto, J. A. Patients with sickle cell disease have increased sensitivity to cold and heat. Am. J. Hematol. 88, 37–43 (2013).

    Article  PubMed  Google Scholar 

  31. Walker, S. M. et al. Long-term impact of neonatal intensive care and surgery on somatosensory perception in children born extremely preterm. Pain 141, 79–87 (2009).

    Article  PubMed  Google Scholar 

  32. Zohsel, K., Hohmeister, J., Oelkers-Ax, R., Flor, H. & Hermann, C. Quantitative sensory testing in children with migraine: preliminary evidence for enhanced sensitivity to painful stimuli especially in girls. Pain 123, 10–18 (2006).

    Article  PubMed  Google Scholar 

  33. Sethna, N. F., Meier, P. M., Zurakowski, D. & Berde, C. B. Cutaneous sensory abnormalities in children and adolescents with complex regional pain syndromes. Pain 131, 153–161 (2007).

    Article  PubMed  Google Scholar 

  34. Hogeweg, J. A. et al. The pain threshold in juvenile chronic arthritis. Br. J. Rheumatol. 34, 61–67 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Hogeweg, J. A., Kuis, W., Oostendorp, R. A. & Helders, P. J. General and segmental reduced pain thresholds in juvenile chronic arthritis. Pain 62, 11–17 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Leegaard, A., Lomholt, J. J., Thastum, M. & Herlin, T. Decreased pain threshold in juvenile idiopathic arthritis: a cross-sectional study. J. Rheumatol. 40, 1212–1217 (2013).

    Article  PubMed  Google Scholar 

  37. McCutcheon, J. E. & Marinelli, M. Age matters. Eur. J. Neurosci. 29, 997–1014 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Schaible, H.-G., Ebersberger, A. & Von Banchet, G. S. Mechanisms of pain in arthritis. Ann. NY Acad. Sci. 966, 343–354 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Schaible, H.-G. et al. Joint pain. Exp. Brain Res. 196, 153–162 (2009).

    Article  PubMed  Google Scholar 

  40. Schaible, H.-G. et al. The role of proinflammatory cytokines in the generation and maintenance of joint pain. Ann. NY Acad. Sci. 1193, 60–69 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Fitzgerald, M. Cutaneous primary afferent properties in the hind limb of the neonatal rat. J. Physiol. 383, 79–92 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Koltzenburg, M., Stucky, C. L. & Lewin, G. R. Receptive properties of mouse sensory neurons innervating hairy skin. J. Neurophysiol. 78, 1841–1850 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Koltzenburg, M. & Lewin, G. R. Receptive properties of embryonic chick sensory neurons innervating skin. J. Neurophysiol. 78, 2560–2568 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Beggs, S. et al. A role for NT-3 in the hyperinnervation of neonatally wounded skin. Pain 153, 2133–2139 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Alvares, D., Torsney, C., Beland, B., Reynolds, M. & Fitzgerald, M. Modelling the prolonged effects of neonatal pain. Prog. Brain Res. 129, 365–373 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Koltzenburg, M. The changing sensitivity in the life of the nociceptor. Pain 82 (Suppl. 1), S93–S102 (1999).

    Article  Google Scholar 

  47. Lin, C. & Al-Chaer, E. D. Long-term sensitization of primary afferents in adult rats exposed to neonatal colon pain. Brain Res. 971, 73–82 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Schaible, H.-G., Del Rosso, A. & Matucci-Cerinic, M. Neurogenic aspects of inflammation. Rheum. Dis. Clin. North Am. 31, 77–101 (2005).

    Article  PubMed  Google Scholar 

  49. Green, P. G., Chen, X., Alvarez, P., Ferrari, L. F. & Levine, J. D. Early-life stress produces muscle hyperalgesia and nociceptor sensitization in the adult rat. Pain 152, 2549–2556 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Alvarez, P., Green, P. G. & Levine, J. D. Stress in the adult rat exacerbates muscle pain induced by early-life stress. Biol. Psychiatry 74, 688–695 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Woolf, C. J. Central sensitization: uncovering the relation between pain and plasticity. Anesthesiology 106, 864–867 (2007).

    Article  PubMed  Google Scholar 

  52. Meeus, M. et al. Central sensitization in patients with rheumatoid arthritis: a systematic literature review. Semin. Arthritis Rheum. 41, 556–567 (2012).

    Article  PubMed  Google Scholar 

  53. Neugebauer, V. & Schaible, H. G. Evidence for a central component in the sensitization of spinal neurons with joint input during development of acute arthritis in cat's knee. J. Neurophysiol. 64, 299–311 (1990).

    Article  CAS  PubMed  Google Scholar 

  54. Neugebauer, V., Lücke, T. & Schaible, H. G. N-methyl-D-aspartate (NMDA) and non-NMDA receptor antagonists block the hyperexcitability of dorsal horn neurons during development of acute arthritis in rat's knee joint. J. Neurophysiol. 70, 1365–1377 (1993).

    Article  CAS  PubMed  Google Scholar 

  55. Schaible, H. G., Schmidt, R. F. & Willis, W. D. Convergent inputs from articular, cutaneous and muscle receptors onto ascending tract cells in the cat spinal cord. Exp. Brain Res. 66, 479–488 (1987).

    Article  CAS  PubMed  Google Scholar 

  56. Woolf, C. J. Central sensitization: implications for the diagnosis and treatment of pain. Pain 152 (Suppl.), S2–S15 (2011).

    Article  PubMed  Google Scholar 

  57. Taves, S., Berta, T., Chen, G. & Ji, R.-R. Microglia and spinal cord synaptic plasticity in persistent pain. Neural Plast. 2013, 753656 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Schomberg, D. & Olson, J. K. Immune responses of microglia in the spinal cord: contribution to pain states. Exp. Neurol. 234, 262–270 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Liu, T., Gao, Y.-J. & Ji, R.-R. Emerging role of Toll-like receptors in the control of pain and itch. Neurosci. Bull. 28, 131–144 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nicotra, L., Loram, L. C., Watkins, L. R. & Hutchinson, M. R. Toll-like receptors in chronic pain. Exp. Neurol. 234, 316–329 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Walker, S. M., Meredith-Middleton, J., Lickiss, T., Moss, A. & Fitzgerald, M. Primary and secondary hyperalgesia can be differentiated by postnatal age and ERK activation in the spinal dorsal horn of the rat pup. Pain 128, 157–168 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Torsney, C. & Fitzgerald, M. Age-dependent effects of peripheral inflammation on the electrophysiological properties of neonatal rat dorsal horn neurons. J. Neurophysiol. 87, 1311–1317 (2002).

    Article  PubMed  Google Scholar 

  63. La Hausse, L., Fabrizi, L. & Fitzgerald, M. Analysis of spinal pain responses in a rodent model of juvenile joint inflammation. Poster presented at the 14th World Congress of Pain [abstract PW243].

  64. Li, J., Walker, S. M., Fitzgerald, M. & Baccei, M. L. Activity-dependent modulation of glutamatergic signaling in the developing rat dorsal horn by early tissue injury. J. Neurophysiol. 102, 2208–2219 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li, J. & Baccei, M. L. Neonatal tissue damage facilitates nociceptive synaptic input to the developing superficial dorsal horn via NGF-dependent mechanisms. Pain 152, 1846–1855 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li, J., Blankenship, M. L. & Baccei, M. L. Deficits in glycinergic inhibition within adult spinal nociceptive circuits after neonatal tissue damage. Pain 154, 1129–1139 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Moss, A. et al. Spinal microglia and neuropathic pain in young rats. Pain 128, 215–224 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Hathway, G. J., Vega-Avelaira, D., Moss, A., Ingram, R. & Fitzgerald, M. Brief, low frequency stimulation of rat peripheral C-fibres evokes prolonged microglial-induced central sensitization in adults but not in neonates. Pain 144, 110–118 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Costigan, M. et al. T-cell infiltration and signaling in the adult dorsal spinal cord is a major contributor to neuropathic pain-like hypersensitivity. J. Neurosci. 29, 14415–14422 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Beggs, S., Currie, G., Salter, M. W., Fitzgerald, M. & Walker, S. M. Priming of adult pain responses by neonatal pain experience: maintenance by central neuroimmune activity. Brain J. Neurol. 135, 404–417 (2012).

    Article  Google Scholar 

  71. Gebhart, G. F. Descending modulation of pain. Neurosci. Biobehav. Rev. 27, 729–737 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Vanegas, H. & Schaible, H.-G. Descending control of persistent pain: inhibitory or facilitatory? Brain Res. Brain Res. Rev. 46, 295–309 (2004).

    Article  PubMed  Google Scholar 

  73. Cervero, F., Schaible, H. G. & Schmidt, R. F. Tonic descending inhibition of spinal cord neurones driven by joint afferents in normal cats and in cats with an inflamed knee joint. Exp. Brain Res. 83, 675–678 (1991).

    Article  CAS  PubMed  Google Scholar 

  74. Schaible, H. G., Neugebauer, V., Cervero, F. & Schmidt, R. F. Changes in tonic descending inhibition of spinal neurons with articular input during the development of acute arthritis in the cat. J. Neurophysiol. 66, 1021–1032 (1991).

    Article  CAS  PubMed  Google Scholar 

  75. Eippert, F. et al. Activation of the opioidergic descending pain control system underlies placebo analgesia. Neuron 63, 533–543 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Sprenger, C. et al. Attention modulates spinal cord responses to pain. Curr. Biol. 22, 1019–1022 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Geuter, S. & Büchel, C. Facilitation of pain in the human spinal cord by nocebo treatment. J. Neurosci. 33, 13784–13790 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fitzgerald, M. & Koltzenburg, M. The functional development of descending inhibitory pathways in the dorsolateral funiculus of the newborn rat spinal cord. Brain Res. 389, 261–270 (1986).

    Article  CAS  PubMed  Google Scholar 

  79. Van Praag, H. & Frenk, H. The development of stimulation-produced analgesia (SPA) in the rat. Brain Res. Dev. Brain Res. 64, 71–76 (1991).

    Article  CAS  PubMed  Google Scholar 

  80. Hathway, G. J., Vega-Avelaira, D. & Fitzgerald, M. A critical period in the supraspinal control of pain: opioid-dependent changes in brainstem rostroventral medulla function in preadolescence. Pain 153, 775–783 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kwok, C. H. T., Devonshire, I. M., Bennett, A. J. & Hathway, G. J. Postnatal maturation of endogenous opioid systems within the periaqueductal grey and spinal dorsal horn of the rat. Pain 155, 168–178 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Laprairie, J. L. & Murphy, A. Z. Neonatal injury alters adult pain sensitivity by increasing opioid tone in the periaqueductal gray. Front. Behav. Neurosci. 3, 31 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Zhang, Y.-H., Wang, X.-M. & Ennis, M. Effects of neonatal inflammation on descending modulation from the rostroventromedial medulla. Brain Res. Bull. 83, 16–22 (2010).

    Article  PubMed  Google Scholar 

  84. Fabrizi, L. et al. A shift in sensory processing that enables the developing human brain to discriminate touch from pain. Curr. Biol. 21, 1552–1558 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Petanjek, Z. et al. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc. Natl Acad. Sci. USA 108, 13281–13286 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hohmeister, J. et al. Cerebral processing of pain in school-aged children with neonatal nociceptive input: an exploratory fMRI study. Pain 150, 257–267 (2010).

    Article  PubMed  Google Scholar 

  87. Apkarian, A. V., Bushnell, M. C., Treede, R.-D. & Zubieta, J.-K. Human brain mechanisms of pain perception and regulation in health and disease. Eur. J. Pain 9, 463–484 (2005).

    Article  PubMed  Google Scholar 

  88. Lebel, A. et al. fMRI reveals distinct CNS processing during symptomatic and recovered complex regional pain syndrome in children. Brain J. Neurol. 131, 1854–1879 (2008).

    Article  CAS  Google Scholar 

  89. Linnman, C. et al. Transient and persistent pain induced connectivity alterations in pediatric complex regional pain syndrome. PLoS ONE 8, e57205 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hess, A. et al. Blockade of TNF-α rapidly inhibits pain responses in the central nervous system. Proc. Natl Acad. Sci. USA 108, 3731–3736 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Koch, S. C. & Fitzgerald, M. Activity dependent development of tactile and nociceptive spinal cord circuits. Ann. NY Acad. Sci. 1279, 97–102 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Schwaller, F. & Fitzgerald, M. The consequences of pain in early life: injury induced plasticity in developing pain pathways. Eur. J. Neurosci. (in press).

  93. Ren, K. et al. Characterization of basal and re-inflammation-associated long-term alteration in pain responsivity following short-lasting neonatal local inflammatory insult. Pain 110, 588–596 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Walker, S. M., Tochiki, K. K. & Fitzgerald, M. Hindpaw incision in early life increases the hyperalgesic response to repeat surgical injury: critical period and dependence on initial afferent activity. Pain 147, 99–106 (2009).

    Article  PubMed  Google Scholar 

  95. Wang, G., Ji, Y., Lidow, M. S. & Traub, R. J. Neonatal hind paw injury alters processing of visceral and somatic nociceptive stimuli in the adult rat. J. Pain 5, 440–449 (2004).

    Article  PubMed  Google Scholar 

  96. Al-Chaer, E. D., Kawasaki, M. & Pasricha, P. J. A new model of chronic visceral hypersensitivity in adult rats induced by colon irritation during postnatal development. Gastroenterology 119, 1276–1285 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Wang, J., Gu, C. & Al-Chaer, E. D. Altered behavior and digestive outcomes in adult male rats primed with minimal colon pain as neonates. Behav. Brain Funct. 4, 28 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Boissé, L., Spencer, S. J., Mouihate, A., Vergnolle, N. & Pittman, Q. J. Neonatal immune challenge alters nociception in the adult rat. Pain 119, 133–141 (2005).

    Article  PubMed  CAS  Google Scholar 

  99. Grunau, R. E., Holsti, L. & Peters, J. W. B. Long-term consequences of pain in human neonates. Semin. Fetal Neonatal Med. 11, 268–275 (2006).

    Article  PubMed  Google Scholar 

  100. Hermann, C., Hohmeister, J., Demirakça, S., Zohsel, K. & Flor, H. Long-term alteration of pain sensitivity in school-aged children with early pain experiences. Pain 125, 278–285 (2006).

    Article  PubMed  Google Scholar 

  101. Jones, G. T., Power, C. & Macfarlane, G. J. Adverse events in childhood and chronic widespread pain in adult life: Results from the 1958 British Birth Cohort Study. Pain 143, 92–96 (2009).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

M.F. and L.L.H.d.L are supported by an MRC UK grant (ref: G0901269). Y.I. is supported through an Arthritis Research UK grant (ref: 20164) and is also supported by the National Institute for Health Research University College London Hospitals Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to Maria Fitzgerald.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Lalouvière, L., Ioannou, Y. & Fitzgerald, M. Neural mechanisms underlying the pain of juvenile idiopathic arthritis. Nat Rev Rheumatol 10, 205–211 (2014). https://doi.org/10.1038/nrrheum.2014.4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2014.4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing