Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Persisting eicosanoid pathways in rheumatic diseases

Key Points

  • Eicosanoid pathways have a major role in the pathogenesis of rheumatic diseases, including rheumatoid arthritis, osteoarthritis, idiopathic inflammatory myositis, systemic lupus erythematosus and gouty arthritis

  • Despite potent suppression of specific inflammatory mechanisms by a wide range of antirheumatic drugs, the cyclooxygenase and 5-lipoxygenase pathways remain overexpressed and can contribute to subclinical inflammation and relapse of rheumatic disease

  • Several enzymes of the arachidonic acid cascade (part of the eicosanoid pathway) and eicosanoid receptors are well-recognized targets for anti-inflammatory drugs that can reduce symptoms of inflammation in rheumatic diseases

  • The combination of microsomal prostaglandin E synthase 1 inhibition with current antirheumatic treatments or with leukotriene inhibitors might improve the effect of anti-inflammatory agents in certain disorders

Abstract

An unmet clinical need exists for early treatment of rheumatic diseases and improved treatment strategies that can better maintain remission with reduced ongoing subclinical inflammation and bone destruction. Eicosanoids form one of the most complex networks in the body controlling many physiological and pathophysiological processes, including inflammation, autoimmunity and cancer. Persisting eicosanoid pathways are thought to be involved in the development of rheumatic diseases, and targeting this pathway might enable improved treatment strategies. Several enzymes of the arachidonic acid cascade as well as eicosanoid receptors (all part of the eicosanoid pathway) are today well-recognized targets for anti-inflammatory drugs that can reduce symptoms of inflammation in rheumatic diseases. In this Review, we outline the evidence supporting pivotal roles of eicosanoid signalling in the pathogenesis of rheumatic diseases and discuss findings from studies in animals and humans. We focus first on rheumatoid arthritis and discuss the upregulation of the cyclooxygenase and lipoxygenase pathways as most data are available in this condition. Research into the roles of eicosanoids in other rheumatic diseases (osteoarthritis, idiopathic inflammatory myopathies, systemic lupus erythematosus and gout) is also progressing rapidly and is discussed. Finally, we summarize the prospects of targeting eicosanoid pathways as anti-inflammatory treatment strategies for patients with rheumatic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biosynthesis of eicosanoids.
Figure 2: Current and putative targets in arachidonic acid cascade for anti-inflammatory treatment in rheumatic diseases.

Similar content being viewed by others

References

  1. Funk, C. D. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294, 1871–1875 (2001).

    CAS  PubMed  Google Scholar 

  2. Ricciotti, E. & FitzGerald, G. A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol. 31, 986–1000 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Stables, M. J. & Gilroy, D. W. Old and new generation lipid mediators in acute inflammation and resolution. Prog. Lipid Res. 50, 35–51 (2011).

    CAS  PubMed  Google Scholar 

  4. Korotkova, M. et al. Effects of antirheumatic treatments on the prostaglandin E2 biosynthetic pathway. Arthritis Rheum. 52, 3439–3447 (2005).

    CAS  PubMed  Google Scholar 

  5. Korotkova, M. et al. Effects of immunosuppressive treatment on microsomal prostaglandin E synthase 1 and cyclooxygenases expression in muscle tissue of patients with polymyositis or dermatomyositis. Ann. Rheum. Dis. 67, 1596–1602 (2008).

    CAS  PubMed  Google Scholar 

  6. Gheorghe, K. R. et al. Prostaglandin E2 synthesizing enzymes in rheumatoid arthritis B cells and the effects of B cell depleting therapy on enzyme expression. PLoS ONE 6, e16378 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Gheorghe, K. R. et al. Limited effect of anti-rheumatic treatment on 15-prostaglandin dehydrogenase in rheumatoid arthritis synovial tissue. Arthritis Res. Ther. 14, R121 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Grosser, T., Yu, Y. & Fitzgerald, G. A. Emotion recollected in tranquility: lessons learned from the COX-2 saga. Annu. Rev. Med. 61, 17–33 (2010).

    CAS  PubMed  Google Scholar 

  9. Smith, W. L., Urade, Y. & Jakobsson, P. J. Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. Chem. Rev. 111, 5821–5865 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Samuelsson, B., Morgenstern, R. & Jakobsson, P. J. Membrane prostaglandin E synthase-1: a novel therapeutic target. Pharmacol. Rev. 59, 207–224 (2007).

    CAS  PubMed  Google Scholar 

  11. Korotkova, M. & Jakobsson, P. J. Characterization of microsomal prostaglandin E synthase 1 Inhibitors. Basic Clin. Pharmacol. Toxicol. 114, 64–69 (2014).

    CAS  PubMed  Google Scholar 

  12. Korotkova, M. & Jakobsson, P. J. Microsomal prostaglandin E synthase-1 in rheumatic diseases. Front. Pharmacol. 1, 1–8 (2010).

    Google Scholar 

  13. Scott, J. P. & Peters-Golden, M. Antileukotriene agents for the treatment of lung disease. Am. J. Res. Crit. Care Med. 188, 538–544 (2013).

    CAS  Google Scholar 

  14. Bombardieri, S. et al. The synovial prostaglandin system in chronic inflammatory arthritis: differential effects of steroidal and nonsteroidal anti-inflammatory drugs. Br. J. Pharmacol. 73, 893–901 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Raichel, L. et al. Reduction of cPLA2α overexpression: an efficient anti-inflammatory therapy for collagen-induced arthritis. Eur. J. Immunol. 38, 2905–2915 (2008).

    CAS  PubMed  Google Scholar 

  16. Tai, N. et al. Cytosolic phospholipase A2 alpha inhibitor, pyrroxyphene, displays anti-arthritic and anti-bone destructive action in a murine arthritis model. Inflamm. Res. 59, 53–62 (2010).

    CAS  PubMed  Google Scholar 

  17. Hegen, M. et al. Cytosolic phospholipase A2α-deficient mice are resistant to collagen-induced arthritis. J. Exp. Med. 197, 1297–1302 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Anderson, G. D. et al. Selective inhibition of cyclooxygenase (COX)-2 reverses inflammation and expression of COX-2 and interleukin 6 in rat adjuvant arthritis. J. Clin. Invest. 97, 2672–2679 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gebhard, H. H. et al. The effects of celecoxib on inflammation and synovial microcirculation in murine antigen-induced arthritis. Clin. Exp. Rheum. 23, 63–70 (2005).

    CAS  Google Scholar 

  20. Myers, L. K. et al. The genetic ablation of cyclooxygenase 2 prevents the development of autoimmune arthritis. Arthritis Rheum. 43, 2687–2693 (2000).

    CAS  PubMed  Google Scholar 

  21. Mancini, J. A. et al. Cloning, expression, and up-regulation of inducible rat prostaglandin e synthase during lipopolysaccharide-induced pyresis and adjuvant-induced arthritis. J. Biol. Chem. 276, 4469–4475 (2001).

    CAS  PubMed  Google Scholar 

  22. Engblom, D. et al. Induction of microsomal prostaglandin E synthase in the rat brain endothelium and parenchyma in adjuvant-induced arthritis. J. Comp. Neurol. 452, 205–214 (2002).

    CAS  PubMed  Google Scholar 

  23. Trebino, C. E. et al. Impaired inflammatory and pain responses in mice lacking an inducible prostaglandin E synthase. Proc. Natl Acad. Sci. USA 100, 9044–9049 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kojima, F. et al. Defective generation of a humoral immune response is associated with a reduced incidence and severity of collagen-induced arthritis in microsomal prostaglandin E synthase-1 null mice. J. Immunol. 180, 8361–8368 (2008).

    CAS  PubMed  Google Scholar 

  25. Tsubouchi, Y. et al. Feedback control of the arachidonate cascade in rheumatoid synoviocytes by 15-deoxy-Δ12,14-prostaglandin J2. Biochem. Biophys. Res. Commun. 283, 750–755 (2001).

    CAS  PubMed  Google Scholar 

  26. Li, X. et al. Expression and regulation of microsomal prostaglandin E synthase-1 in human osteoarthritic cartilage and chondrocytes. J. Rheumatol. 32, 887–895 (2005).

    CAS  PubMed  Google Scholar 

  27. Kawahito, Y. et al. 15-deoxy-Δ12,14-PGJ2 induces synoviocyte apoptosis and suppresses adjuvant-induced arthritis in rats. J. Clin. Invest. 106, 189–197 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Cuzzocrea, S. et al. The cyclopentenone prostaglandin 15-deoxy-Δ12,14-prostaglandin J2 attenuates the development of acute and chronic inflammation. Mol. Pharmacol. 61, 997–1007 (2002).

    CAS  PubMed  Google Scholar 

  29. Bell-Parikh, L. C. et al. Biosynthesis of 15-deoxy-Δ12,14-PGJ2 and the ligation of PPARγ. J. Clin. Invest. 112, 945–955 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Maicas, N., Ibanez, L., Alcaraz, M. J., Ubeda, A. & Ferrandiz, M. L. Prostaglandin D2 regulates joint inflammation and destruction in murine collagen-induced arthritis. Arthritis Rheum. 64, 130–140 (2012).

    CAS  PubMed  Google Scholar 

  31. Pulichino, A. M. et al. Prostacyclin antagonism reduces pain and inflammation in rodent models of hyperalgesia and chronic arthritis. J. Pharmacol. Exp. Ther. 319, 1043–1050 (2006).

    CAS  PubMed  Google Scholar 

  32. Honda, T., Segi-Nishida, E., Miyachi, Y. & Narumiya, S. Prostacyclin-IP signaling and prostaglandin E2-EP2/EP4 signaling both mediate joint inflammation in mouse collagen-induced arthritis. J. Exp. Med. 203, 325–335 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hishinuma, T. et al. Analysis of urinary prostacyclin and thromboxane/prostacyclin ratio in patients with rheumatoid arthritis using gas chromatography/selected ion monitoring. Prostaglandins Leukot. Essent. Fatty Acids 65, 85–90 (2001).

    CAS  PubMed  Google Scholar 

  34. Nakamura, H. et al. Difference in urinary 11-dehydro TXB2 and LTE4 excretion in patients with rheumatoid arthritis. Prostaglandins Leukot. Essent. Fatty Acids 65, 301–306 (2001).

    CAS  PubMed  Google Scholar 

  35. Egg, D. Concentrations of prostaglandins D2, E2, F2α, 6-keto-F1α and thromboxane B2 in synovial fluid from patients with inflammatory joint disorders and osteoarthritis. Z. Rheumol. 43, 89–96 (1984).

    CAS  Google Scholar 

  36. Leistad, L., Feuerherm, A. J., Ostensen, M., Faxvaag, A. & Johansen, B. Presence of secretory group IIa and V phospholipase A2 and cytosolic group IValpha phospholipase A2 in chondrocytes from patients with rheumatoid arthritis. Clin. Chem. Lab. Med. 42, 602–610 (2004).

    CAS  PubMed  Google Scholar 

  37. Hulkower, K. I. et al. Interleukin-1β induces cytosolic phospholipase A2 and prostaglandin H synthase in rheumatoid synovial fibroblasts. Evidence for their roles in the production of prostaglandin E2. Arthritis Rheum. 37, 653–661 (1994).

    CAS  PubMed  Google Scholar 

  38. Crofford, L. J. COX-1 and COX-2 tissue expression: implications and predictions. J. Rheumatol. Suppl. 49, 15–19 (1997).

    CAS  PubMed  Google Scholar 

  39. Siegle, I. et al. Expression of cyclooxygenase 1 and cyclooxygenase 2 in human synovial tissue: differential elevation of cyclooxygenase 2 in inflammatory joint diseases. Arthritis Rheum. 41, 122–129 (1998).

    CAS  PubMed  Google Scholar 

  40. Westman, M. et al. Expression of microsomal prostaglandin E synthase 1 in rheumatoid arthritis synovium. Arthritis Rheum. 50, 1774–1780 (2004).

    CAS  PubMed  Google Scholar 

  41. Murakami, M. et al. Cellular prostaglandin E2 production by membrane-bound prostaglandin E synthase-2 via both cyclooxygenases-1 and -2. J. Biol. Chem. 278, 37937–37947 (2003).

    CAS  PubMed  Google Scholar 

  42. Murakami, M. et al. Regulation of prostaglandin E2 biosynthesis by inducible membrane-associated prostaglandin E2 synthase that acts in concert with cyclooxygenase-2. J. Biol. Chem. 275, 32783–32792 (2000).

    CAS  PubMed  Google Scholar 

  43. Lazarus, M. et al. Biochemical characterization of mouse microsomal prostaglandin E synthase-1 and its colocalization with cyclooxygenase-2 in peritoneal macrophages. Arch. Biochem. Biophys. 397, 336–341 (2002).

    CAS  PubMed  Google Scholar 

  44. Thoren, S. & Jakobsson, P. J. Coordinate up- and down-regulation of glutathione-dependent prostaglandin E synthase and cyclooxygenase-2 in A549 cells. Inhibition by NS-398 and leukotriene C4. Eur. J. Biochem. 267, 6428–6434 (2000).

    CAS  PubMed  Google Scholar 

  45. Dieter, P. et al. Functional coupling of cyclooxygenase 1 and 2 to discrete prostanoid synthases in liver macrophages. Biochem. Biophys. Res. Commun. 276, 488–492 (2000).

    CAS  PubMed  Google Scholar 

  46. Stichtenoth, D. O. et al. Microsomal prostaglandin E synthase is regulated by proinflammatory cytokines and glucocorticoids in primary rheumatoid synovial cells. J. Immunol. 167, 469–474 (2001).

    CAS  PubMed  Google Scholar 

  47. Kojima, F. et al. Prostaglandin E2 is an enhancer of interleukin-1β-induced expression of membrane-associated prostaglandin E synthase in rheumatoid synovial fibroblasts. Arthritis Rheum. 48, 2819–2828 (2003).

    CAS  PubMed  Google Scholar 

  48. Nah, S. S. et al. Epidermal growth factor increases prostaglandin E2 production via ERK1/2 MAPK and NF-κB pathway in fibroblast like synoviocytes from patients with rheumatoid arthritis. Rheumatol. Int. 30, 443–449 (2010).

    CAS  PubMed  Google Scholar 

  49. Kusunoki, N. et al. Adiponectin stimulates prostaglandin E2 production in rheumatoid synovial fibroblasts. Arthritis Rheum. 62, 1641–1649 (2010).

    CAS  PubMed  Google Scholar 

  50. Jungel, A. et al. Microparticles stimulate the synthesis of prostaglandin E2 via induction of cyclooxygenase 2 and microsomal prostaglandin E synthase 1. Arthritis Rheum. 56, 3564–3574 (2007).

    CAS  PubMed  Google Scholar 

  51. Tong, M., Ding, Y. & Tai, H. H. Reciprocal regulation of cyclooxygenase-2 and 15-hydroxyprostaglandin dehydrogenase expression in A549 human lung adenocarcinoma cells. Carcinogenesis 27, 2170–2179 (2006).

    CAS  PubMed  Google Scholar 

  52. Newton, R., Seybold, J., Kuitert, L. M., Bergmann, M. & Barnes, P. J. Repression of cyclooxygenase-2 and prostaglandin E2 release by dexamethasone occurs by transcriptional and post-transcriptional mechanisms involving loss of polyadenylated mRNA. J. Biol. Chem. 273, 32312–32321 (1998).

    CAS  PubMed  Google Scholar 

  53. Dolhain, R. J. et al. Methotrexate reduces inflammatory cell numbers, expression of monokines and of adhesion molecules in synovial tissue of patients with rheumatoid arthritis. Br. J. Rheumatol. 37, 502–508 (1998).

    CAS  PubMed  Google Scholar 

  54. Mello, S. B., Barros, D. M., Silva, A. S., Laurindo, I. M. & Novaes, G. S. Methotrexate as a preferential cyclooxygenase 2 inhibitor in whole blood of patients with rheumatoid arthritis. Rheumatology (Oxford) 39, 533–536 (2000).

    CAS  Google Scholar 

  55. Vergne, P. et al. Methotrexate and cyclooxygenase metabolism in cultured human rheumatoid synoviocytes. J. Rheumatol. 25, 433–440 (1998).

    CAS  PubMed  Google Scholar 

  56. Seitz, M., Loetscher, P., Dewald, B., Towbin, H. & Baggiolini, M. In vitro modulation of cytokine, cytokine inhibitor, and prostaglandin E release from blood mononuclear cells and synovial fibroblasts by antirheumatic drugs. J. Rheumatol. 24, 1471–1476 (1997).

    CAS  PubMed  Google Scholar 

  57. Tracey, D., Klareskog, L., Sasso, E. H., Salfeld, J. G. & Tak, P. P. Tumor necrosis factor antagonist mechanisms of action: a comprehensive review. Pharmacol. Ther. 117, 244–279 (2008).

    CAS  PubMed  Google Scholar 

  58. Catrina, A. I. et al. Evidence that anti-tumor necrosis factor therapy with both etanercept and infliximab induces apoptosis in macrophages, but not lymphocytes, in rheumatoid arthritis joints: extended report. Arthritis Rheum. 52, 61–72 (2005).

    CAS  PubMed  Google Scholar 

  59. Thurlings, R. M. et al. Synovial tissue response to rituximab: mechanism of action and identification of biomarkers of response. Ann. Rheum. Dis. 67, 917–925 (2008).

    CAS  PubMed  Google Scholar 

  60. Klickstein, L. B., Shapleigh, C. & Goetzl, E. J. Lipoxygenation of arachidonic acid as a source of polymorphonuclear leukocyte chemotactic factors in synovial fluid and tissue in rheumatoid arthritis and spondyloarthritis. J. Clin. Invest. 66, 1166–1170 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Davidson, E. M., Rae, S. A. & Smith, M. J. Leukotriene B4, a mediator of inflammation present in synovial fluid in rheumatoid arthritis. Ann. Rheum. Dis. 42, 677–679 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Elmgreen, J., Nielsen, O. H. & Ahnfelt-Ronne, I. Enhanced capacity for release of leucotriene B4 by neutrophils in rheumatoid arthritis. Ann. Rheum. Dis. 46, 501–505 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ahmadzadeh, N., Shingu, M., Nobunaga, M. & Tawara, T. Relationship between leukotriene B4 and immunological parameters in rheumatoid synovial fluids. Inflammation 15, 497–503 (1991).

    CAS  PubMed  Google Scholar 

  64. Koshihara, Y., Isono, T., Oda, H., Karube, S. & Hayashi, Y. Measurement of sulfidopeptide leukotrienes and their metabolism in human synovial fluid of patients with rheumatoid arthritis. Prostaglandins Leukot. Essent. Fatty Acids 32, 113–119 (1988).

    CAS  PubMed  Google Scholar 

  65. Xu, S., Lu, H., Lin, J., Chen, Z. & Jiang, D. Regulation of TNFα and IL1β in rheumatoid arthritis synovial fibroblasts by leukotriene B4. Rheumatol. Int. 30, 1183–1189 (2010).

    CAS  PubMed  Google Scholar 

  66. Chen, M. et al. Joint tissues amplify inflammation and alter their invasive behavior via leukotriene B4 in experimental inflammatory arthritis. J. Immunol. 185, 5503–5511 (2010).

    CAS  PubMed  Google Scholar 

  67. Chen, H. et al. Effects of leukotriene B4 and prostaglandin E2 on the differentiation of murine Foxp3+ T regulatory cells and TH17 cells. Prostaglandins Leukot. Essent. Fatty Acids 80, 195–200 (2009).

    CAS  PubMed  Google Scholar 

  68. Garcia, C. et al. Leukotriene B4 stimulates osteoclastic bone resorption both in vitro and in vivo. J. Bone Miner. Res. 11, 1619–1627 (1996).

    CAS  PubMed  Google Scholar 

  69. Chen, M. et al. Neutrophil-derived leukotriene B4 is required for inflammatory arthritis. J. Exp. Med. 203, 837–842 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Griffiths, R. J. et al. Collagen-induced arthritis is reduced in 5-lipoxygenase-activating protein-deficient mice. J. Exp. Med. 185, 1123–1129 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Griffiths, R. J. et al. Leukotriene B4 plays a critical role in the progression of collagen-induced arthritis. Proc. Natl Acad. Sci. USA 92, 517–521 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Hashimoto, A. et al. Antiinflammatory mediator lipoxin A4 and its receptor in synovitis of patients with rheumatoid arthritis. J. Rheumatol. 34, 2144–2153 (2007).

    CAS  PubMed  Google Scholar 

  73. Gheorghe, K. R. et al. Expression of 5-lipoxygenase and 15-lipoxygenase in rheumatoid arthritis synovium and effects of intraarticular glucocorticoids. Arthritis Res. Ther. 11, R83 (2009).

    PubMed  PubMed Central  Google Scholar 

  74. Leroux, J. L., Damon, M., Chavis, C., Crastes de Paulet, A. & Blotman, F. Effects of a single dose of methotrexate on 5- and 12-lipoxygenase products in patients with rheumatoid arthritis. J. Rheumatol. 19, 863–866 (1992).

    CAS  PubMed  Google Scholar 

  75. Sperling, R. I. et al. Acute and chronic suppression of leukotriene B4 synthesis ex vivo in neutrophils from patients with rheumatoid arthritis beginning treatment with methotrexate. Arthritis Rheum. 35, 376–384 (1992).

    CAS  PubMed  Google Scholar 

  76. Weinblatt, M. E. et al. Zileuton, a 5-lipoxygenase inhibitor in rheumatoid arthritis. J. Rheumatol. 19, 1537–1541 (1992).

    CAS  PubMed  Google Scholar 

  77. Diaz-Gonzalez, F. et al. Clinical trial of a leucotriene B4 receptor antagonist, BIIL 284, in patients with rheumatoid arthritis. Ann. Rheum. Dis. 66, 628–632 (2007).

    CAS  PubMed  Google Scholar 

  78. Liagre, B., Vergne, P., Rigaud, M. & Beneytout, J. L. Arachidonate 15-lipoxygenase of reticulocyte-type in human rheumatoid arthritis type B synoviocytes and modulation of its activity by proinflammatory cytokines. J. Rheumatol. 26, 1044–1051 (1999).

    CAS  PubMed  Google Scholar 

  79. Deleuran, B. et al. Interleukin-8 secretion and 15-lipoxygenase activity in rheumatoid arthritis: in vitro anti-inflammatory effects by interleukin-4 and interleukin-10, but not by interleukin-1 receptor antagonist protein. Br. J. Rheum. 33, 520–525 (1994).

    CAS  Google Scholar 

  80. Profita, M. et al. Leukotriene B4 production in human mononuclear phagocytes is modulated by interleukin-4-induced 15-lipoxygenase. J. Pharmacol. Exp. Ther. 300, 868–875 (2002).

    CAS  PubMed  Google Scholar 

  81. Ternowitz, T., Fogh, K. & Kragballe, K. 15-Hydroxyeicosatetraenoic acid (15-HETE) specifically inhibits LTB4-induced chemotaxis of human neutrophils. Skin Pharmacol. 1, 93–99 (1988).

    CAS  PubMed  Google Scholar 

  82. Kronke, G., Uderhardt, S., Katzenbeisser, J. & Schett, G. The 12/15-lipoxygenase pathway promotes osteoclast development and differentiation. Autoimmunity 42, 383–385 (2009).

    PubMed  Google Scholar 

  83. Sodin-Semrl, S., Taddeo, B., Tseng, D., Varga, J. & Fiore, S. Lipoxin A4 inhibits IL-1 β-induced IL-6, IL-8, and matrix metalloproteinase-3 production in human synovial fibroblasts and enhances synthesis of tissue inhibitors of metalloproteinases. J. Immunol. 164, 2660–2666 (2000).

    CAS  PubMed  Google Scholar 

  84. Brash, A. R., Boeglin, W. E. & Chang, M. S. Discovery of a second 15S-lipoxygenase in humans. Proc. Natl Acad. Sci. USA 94, 6148–6152 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Giera, M. et al. Lipid and lipid mediator profiling of human synovial fluid in rheumatoid arthritis patients by means of LC-MS/MS. Biochim. Biophys. Acta 1821, 1415–1424 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kronke, G. et al. 12/15-lipoxygenase counteracts inflammation and tissue damage in arthritis. J. Immunol. 183, 3383–3389 (2009).

    PubMed  Google Scholar 

  87. Zhang, L. et al. BML-111, a lipoxin receptor agonist, modulates the immune response and reduces the severity of collagen-induced arthritis. Inflam. Res. 57, 157–162 (2008).

    CAS  Google Scholar 

  88. Lima-Garcia, J. F. et al. The precursor of resolvin D series and aspirin-triggered resolvin D1 display anti-hyperalgesic properties in adjuvant-induced arthritis in rats. Br. J. Pharm. 164, 278–293 (2011).

    CAS  Google Scholar 

  89. Feltenmark, S. et al. Eoxins are proinflammatory arachidonic acid metabolites produced via the 15-lipoxygenase-1 pathway in human eosinophils and mast cells. Proc. Natl Acad. Sci. USA 105, 680–685 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Loeser, R. F., Goldring, S. R., Scanzello, C. R. & Goldring, M. B. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 64, 1697–1707 (2012).

    PubMed  PubMed Central  Google Scholar 

  91. Laufer, S. Role of eicosanoids in structural degradation in osteoarthritis. Curr. Opin. Rheumatol. 15, 623–627 (2003).

    CAS  PubMed  Google Scholar 

  92. He, W., Pelletier, J. P., Martel-Pelletier, J., Laufer, S. & Di Battista, J. A. Synthesis of interleukin 1beta, tumor necrosis factor-alpha, and interstitial collagenase (MMP-1) is eicosanoid dependent in human osteoarthritis synovial membrane explants: interactions with antiinflammatory cytokines. J. Rheumatol. 29, 546–553 (2002).

    CAS  PubMed  Google Scholar 

  93. Sahap Atik, O. Leukotriene B4 and prostaglandin E2-like activity in synovial fluid in osteoarthritis. Prostaglandins Leukot. Essent. Fatty Acids 39, 253–254 (1990).

    CAS  PubMed  Google Scholar 

  94. Wittenberg, R. H., Willburger, R. E., Kleemeyer, K. S. & Peskar, B. A. In vitro release of prostaglandins and leukotrienes from synovial tissue, cartilage, and bone in degenerative joint diseases. Arthritis Rheum. 36, 1444–1450 (1993).

    CAS  PubMed  Google Scholar 

  95. Attur, M., Dave, M., Abramson, S. B. & Amin, A. Activation of diverse eicosanoid pathways in osteoarthritic cartilage: a lipidomic and genomic analysis. Bull. NYU Hosp. Joint Dis. 70, 99–108 (2012).

    Google Scholar 

  96. Masuko-Hongo, K. et al. Up-regulation of microsomal prostaglandin E synthase 1 in osteoarthritic human cartilage: critical roles of the ERK-1/2 and p38 signaling pathways. Arthritis Rheum. 50, 2829–2838 (2004).

    CAS  PubMed  Google Scholar 

  97. Kojima, F., Kato, S. & Kawai, S. Prostaglandin E synthase in the pathophysiology of arthritis. Fundam. Clin. Pharmacol. 19, 255–261 (2005).

    CAS  PubMed  Google Scholar 

  98. Gosset, M. et al. Crucial role of visfatin/pre-B cell colony-enhancing factor in matrix degradation and prostaglandin E2 synthesis in chondrocytes: possible influence on osteoarthritis. Arthritis Rheum. 58, 1399–1409 (2008).

    CAS  PubMed  Google Scholar 

  99. Zayed, N. et al. Increased expression of lipocalin-type prostaglandin D2 synthase in osteoarthritic cartilage. Arthritis Res. Ther. 10, R146 (2008).

    PubMed  PubMed Central  Google Scholar 

  100. Zayed, N. et al. Inhibition of interleukin-1beta-induced matrix metalloproteinases 1 and 13 production in human osteoarthritic chondrocytes by prostaglandin D2. Arthritis Rheum. 58, 3530–3540 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Martel-Pelletier, J. et al. Regulation of the expression of 5-lipoxygenase-activating protein/5-lipoxygenase and the synthesis of leukotriene B4 in osteoarthritic chondrocytes: role of transforming growth factor beta and eicosanoids. Arthritis Rheum. 50, 3925–3933 (2004).

    CAS  PubMed  Google Scholar 

  102. Paredes, Y. et al. Study of the role of leukotriene B()4 in abnormal function of human subchondral osteoarthritis osteoblasts: effects of cyclooxygenase and/or 5-lipoxygenase inhibition. Arthritis Rheum. 46, 1804–1812 (2002).

    CAS  PubMed  Google Scholar 

  103. Alvarez-Soria, M. A. et al. Long-term NSAID treatment directly decreases COX-2 and mPGES-1 production in the articular cartilage of patients with osteoarthritis. Osteoarthritis Cartil. 16, 1484–1493 (2008).

    CAS  Google Scholar 

  104. Faour, W. H. et al. Prostaglandin E2 regulates the level and stability of cyclooxygenase-2 mRNA through activation of p38 mitogen-activated protein kinase in interleukin-1 beta-treated human synovial fibroblasts. J. Biol. Chem. 276, 31720–31731 (2001).

    CAS  PubMed  Google Scholar 

  105. Marcouiller, P. et al. Leukotriene and prostaglandin synthesis pathways in osteoarthritic synovial membranes: regulating factors for interleukin 1beta synthesis. J. Rheumatol. 32, 704–712 (2005).

    CAS  PubMed  Google Scholar 

  106. Raynauld, J. P. et al. Protective effects of licofelone, a 5-lipoxygenase and cyclo-oxygenase inhibitor, versus naproxen on cartilage loss in knee osteoarthritis: a first multicentre clinical trial using quantitative MRI. Ann. Rheum. Dis. 68, 938–947 (2009).

    CAS  PubMed  Google Scholar 

  107. Chini, M. G. et al. Design and synthesis of a second series of triazole-based compounds as potent dual mPGES-1 and 5-lipoxygenase inhibitors. Eur. J. Med. Chem. 54, 311–323 (2012).

    CAS  PubMed  Google Scholar 

  108. Chabane, N. et al. Human articular chondrocytes express 15-lipoxygenase-1 and -2: potential role in osteoarthritis. Arthritis Res. Ther. 11, R44 (2009).

    PubMed  PubMed Central  Google Scholar 

  109. Prisk, V. & Huard, J. Muscle injuries and repair: the role of prostaglandins and inflammation. Histol. Histopathol. 18, 1243–1256 (2003).

    CAS  PubMed  Google Scholar 

  110. Studynkova, J. T. et al. The expression of cyclooxygenase-1, cyclooxygenase-2 and 5-lipoxygenase in inflammatory muscle tissue of patients with polymyositis and dermatomyositis. Clin. Exp. Rheumatol. 22, 395–402 (2004).

    CAS  PubMed  Google Scholar 

  111. Loell, I. et al. Activated LTB4 pathway in muscle tissue of patients with polymyositis or dermatomyositis. Ann. Rheum. Dis. 72, 293–299 (2013).

    CAS  PubMed  Google Scholar 

  112. Choi, J., Kim, S. T. & Craft, J. The pathogenesis of systemic lupus erythematosus-an update. Curr. Opin. Immunol. 24, 651–657 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Patrono, C. et al. Functional significance of renal prostacyclin and thromboxane A2 production in patients with systemic lupus erythematosus. J. Clin. Invest. 76, 1011–1018 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Yoshida, T., Ichikawa, Y., Tojo, T. & Homma, M. Abnormal prostanoid metabolism in lupus nephritis and the effects of a thromboxane A2 synthetase inhibitor, DP-1904. Lupus 5, 129–138 (1996).

    CAS  PubMed  Google Scholar 

  115. Avalos, I. et al. Aspirin therapy and thromboxane biosynthesis in systemic lupus erythematosus. Lupus 16, 981–986 (2007).

    CAS  PubMed  Google Scholar 

  116. Steinhauer, H. B., Batsford, S., Schollmeyer, P. & Kluthe, R. Studies on thromboxane B2 and prostaglandin E2 production in the course of murine autoimmune disease: inhibition by oral histidine and zinc supplementation. Clin. Nephrol. 24, 63–68 (1985).

    CAS  PubMed  Google Scholar 

  117. Spurney, R. F., Bernstein, R. J., Ruiz, P., Pisetsky, D. S. & Coffman, T. M. Physiologic role for enhanced renal thromboxane production in murine lupus nephritis. Prostaglandins 42, 15–28 (1991).

    CAS  PubMed  Google Scholar 

  118. Poleshuck, L. C., Gartner, S. M., Belisle, E. H. & Strausser, H. R. Altered immune complex-induced prostaglandin production in human and murine lupus. Prostaglandins Med. 6, 317–327 (1981).

    CAS  PubMed  Google Scholar 

  119. Chae, B. S. et al. Prostaglandin E2-mediated dysregulation of proinflammatory cytokine production in pristane-induced lupus mice. Arch. Pharm. Res. 31, 503–510 (2008).

    CAS  PubMed  Google Scholar 

  120. Woolf, A. D. & Dieppe, P. A. Mediators of crystal-induced inflammation in the joint. Br. Med. Bull. 43, 429–444 (1987).

    CAS  PubMed  Google Scholar 

  121. Bouchard, L., de Medicis, R., Lussier, A., Naccache, P. H. & Poubelle, P. E. Inflammatory microcrystals alter the functional phenotype of human osteoblast-like cells in vitro: synergism with IL-1 to overexpress cyclooxygenase-2. J. Immunol. 168, 5310–5317 (2002).

    CAS  PubMed  Google Scholar 

  122. Bomalaski, J. S., Baker, D. G., Brophy, L. M. & Clark, M. A. Monosodium urate crystals stimulate phospholipase A2 enzyme activities and the synthesis of a phospholipase A2-activating protein. J. Immunol. 145, 3391–3397 (1990).

    CAS  PubMed  Google Scholar 

  123. Pouliot, M., James, M. J., McColl, S. R., Naccache, P. H. & Cleland, L. G. Monosodium urate microcrystals induce cyclooxygenase-2 in human monocytes. Blood 91, 1769–1776 (1998).

    CAS  PubMed  Google Scholar 

  124. Fam, A. G. Treating acute gouty arthritis with selective COX 2 inhibitors. Br. Med. J. 325, 980–981 (2002).

    Google Scholar 

  125. Schumacher, H. R. Jr et al. Randomised double blind trial of etoricoxib and indometacin in treatment of acute gouty arthritis. Br. Med. J. 324, 1488–1492 (2002).

    CAS  Google Scholar 

  126. Akahoshi, T. et al. Rapid induction of peroxisome proliferator-activated receptor gamma expression in human monocytes by monosodium urate monohydrate crystals. Arthritis Rheum. 48, 231–239 (2003).

    CAS  PubMed  Google Scholar 

  127. Murakami, Y. et al. Inhibition of monosodium urate monohydrate crystal-induced acute inflammation by retrovirally transfected prostaglandin D synthase. Arthritis Rheum. 48, 2931–2941 (2003).

    CAS  PubMed  Google Scholar 

  128. Jung, S. M. et al. Reduction of urate crystal-induced inflammation by root extracts from traditional oriental medicinal plants: elevation of prostaglandin D2 levels. Arthritis Res. Ther. 9, R64 (2007).

    PubMed  PubMed Central  Google Scholar 

  129. Rae, S. A., Davidson, E. M. & Smith, M. J. Leukotriene B4, an inflammatory mediator in gout. Lancet 2, 1122–1124 (1982).

    CAS  PubMed  Google Scholar 

  130. Leslie, C. A. et al. Dietary fish oil modulates macrophage fatty acids and decreases arthritis susceptibility in mice. J. Exp. Med. 162, 1336–1349 (1985).

    CAS  PubMed  Google Scholar 

  131. Lee, T. H. et al. Effect of dietary enrichment with eicosapentaenoic and docosahexaenoic acids on in vitro neutrophil and monocyte leukotriene generation and neutrophil function. N. Engl. J. Med. 312, 1217–1224 (1985).

    CAS  PubMed  Google Scholar 

  132. Bagga, D., Wang, L., Farias-Eisner, R., Glaspy, J. A. & Reddy, S. T. Differential effects of prostaglandin derived from omega-6 and omega-3 polyunsaturated fatty acids on COX-2 expression and IL-6 secretion. Proc. Natl Acad. Sci. USA 100, 1751–1756 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Serhan, C. N. & Chiang, N. Resolution phase lipid mediators of inflammation: agonists of resolution. Curr. Opin. Pharmacol. 13, 632–640 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Calder, P. C. Omega-3 fatty acids and inflammatory processes. Nutrients 2, 355–374 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Ierna, M., Kerr, A., Scales, H., Berge, K. & Griinari, M. Supplementation of diet with krill oil protects against experimental rheumatoid arthritis. BMC Musculoskelet. Disord. 11, 136 (2010).

    PubMed  PubMed Central  Google Scholar 

  136. Alexander, N. J., Smythe, N. L. & Jokinen, M. P. The type of dietary fat affects the severity of autoimmune disease in NZB/NZW mice. Am. J. Pathol. 127, 106–121 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Halade, G. V., Williams, P. J., Veigas, J. M., Barnes, J. L. & Fernandes, G. Concentrated fish oil (Lovaza®) extends lifespan and attenuates kidney disease in lupus-prone short-lived (NZBxNZW)F1 mice. Exp. Biol. Med. 238, 610–622 (2013).

    Google Scholar 

  138. James, M., Proudman, S. & Cleland, L. Fish oil and rheumatoid arthritis: past, present and future. Proc. Nutr. Soc. 69, 316–323 (2010).

    CAS  PubMed  Google Scholar 

  139. Miles, E. A. & Calder, P. C. Influence of marine n-3 polyunsaturated fatty acids on immune function and a systematic review of their effects on clinical outcomes in rheumatoid arthritis. Br. J. Nutr. 107 (Suppl. 2), S171–S184 (2012).

    CAS  PubMed  Google Scholar 

  140. Duffy, E. M. et al. The clinical effect of dietary supplementation with omega-3 fish oils and/or copper in systemic lupus erythematosus. J. Rheumatol. 31, 1551–1556 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

P.-J.J and M.K. would like to acknowledge support by The Swedish Research Council, The Swedish Rheumatism Association, King Gustaf V 80 years Foundation, The Swedish Society of Medicine, Karolinska Institutet Foundation, The Swedish County Council and Marianne and Marcus Wallenberg foundation.

Author information

Authors and Affiliations

Authors

Contributions

M.K. researched data for the article. Both authors contributed equally to discussion of content, writing, and reviewing/editing the manuscript before submission.

Corresponding author

Correspondence to Per-Johan Jakobsson.

Ethics declarations

Competing interests

P.-J.J. is a member of the board of directors for NovaSAID AB. M.K. declares no competing interests.

Supplementary information

Supplementary Table 1

A list of the described eicosanoids and their receptors (DOC 54 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korotkova, M., Jakobsson, PJ. Persisting eicosanoid pathways in rheumatic diseases. Nat Rev Rheumatol 10, 229–241 (2014). https://doi.org/10.1038/nrrheum.2014.1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2014.1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing