Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Interstitial lung disease in connective tissue disease—mechanisms and management

Key Points

  • Extra-articular features, particularly pulmonary complications, are a major cause of mortality in autoimmune rheumatic disease

  • Interstitial lung disease (ILD) is an important pulmonary complication in a variety of connective tissues diseases, particularly systemic sclerosis

  • Despite advances in understanding of disease mechanisms, more work needs to be done to identify cardinal pathogenetic pathways in order to develop more efficacious therapies

  • The most difficult clinical decision in ILD associated with connective tissue disease is to determine when treatment should be initiated and when meticulous observation without intervention is appropriate

  • The initiation of treatment is warranted when disease progression is probable, based on pulmonary disease severity, evidence of ongoing progression and short duration of systemic disease

  • Current treatment is essentially based on immunosuppression: it is imperative that novel immunomodulatory and antifibrotic agents be evaluated in multicentre treatment trials

Abstract

Pulmonary complications are an important extra-articular feature of autoimmune rheumatic diseases and a major cause of mortality. The underlying pathogenesis probably involves multiple cellular compartments, including the epithelium, lung fibroblasts, and the innate and adaptive immune system. Heterogeneity in the extent and progression of lung fibrosis probably reflects differences in underlying pathogenic mechanisms. Growing understanding of the key pathogenic drivers of lung fibrosis might lead to the development of more effective targeted therapies to replicate the treatment advances in other aspects of these diseases. Interstitial lung disease (ILD) in connective tissue disease (CTD) is characterized using the classification of the idiopathic interstitial pneumonias. Systemic sclerosis is most frequently associated with ILD and, in most of these patients, ILD manifests as a histological pattern of nonspecific interstitial pneumonia. Conversely, in rheumatoid arthritis, the pattern of ILD is most often usual interstitial pneumonia. The key goals of clinical assessment of patients with both ILD and CTD are the detection of ILD and prognostic evaluation to determine which patients should be treated. Data from treatment trials in systemic sclerosis support the use of immunosuppressive therapy, with the treatment benefit largely relating to the prevention of progression of lung disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cellular pathogenesis of fibrotic lung injury.
Figure 2: Generation of profibrotic myofibroblasts after lung injury.

Similar content being viewed by others

References

  1. Fischer, A. & du Bois, R. Interstitial lung disease in connective tissue disorders. Lancet 380, 689–698 (2012).

    PubMed  Google Scholar 

  2. Maurer, B. et al. Fra-2 transgenic mice as a novel model of pulmonary hypertension associated with systemic sclerosis. Ann. Rheum. Dis. 71, 1382–1387 (2012).

    CAS  PubMed  Google Scholar 

  3. Hsu, E., Shi, H., Jordan, R. M., Lyons-Weiler, J., Pilewski, J. M. & Feghali-Bostwick, C. A. Lung tissues in patients with systemic sclerosis have gene expression patterns unique to pulmonary fibrosis and pulmonary hypertension. Arthritis Rheum. 63, 783–794 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Peljto, A. L. et al. The pulmonary fibrosis-associated MUC5B promoter polymorphism does not influence the development of interstitial pneumonia in systemic sclerosis. Chest 142, 1584–1588 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Stock, C. J. et al. Mucin 5B promoter polymorphism is associated with idiopathic pulmonary fibrosis but not with development of lung fibrosis in systemic sclerosis or sarcoidosis. Thorax 68, 436–441 (2013).

    PubMed  Google Scholar 

  6. Hant, F. N. et al. Scleroderma Lung Study Research Group. Surfactant protein D and KL-6 as serum biomarkers of interstitial lung disease in patients with scleroderma. J. Rheumatol. 36, 773–780 (2009).

    CAS  PubMed  Google Scholar 

  7. de Carvalho, E. F. et al. Arterial and interstitial remodelling processes in non-specific interstitial pneumonia: systemic sclerosis versus idiopathic. Histopathology 53, 195–204 (2008).

    CAS  PubMed  Google Scholar 

  8. Hoyles, R. K. et al. Fibroblast-specific perturbation of transforming growth factor β signaling provides insight into potential pathogenic mechanisms of scleroderma-associated lung fibrosis: exaggerated response to alveolar epithelial injury in a novel mouse model. Arthritis Rheum. 58, 1175–1188 (2008).

    CAS  PubMed  Google Scholar 

  9. Christmann, R. B., Wells, A. U., Capelozzi, V. L. & Silver, R. M. Gastroesophageal reflux incites interstitial lung disease in systemic sclerosis: clinical, radiologic, histopathologic, and treatment evidence. Semin. Arthritis Rheum. 40, 241–249 (2010).

    PubMed  Google Scholar 

  10. Walker, N. et al. Resident tissue-specific mesenchymal progenitor cells contribute to fibrogenesis in human lung allografts. Am. J. Pathol. 178, 2461–2469 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Borie, R. et al. Detection of alveolar fibrocytes in idiopathic pulmonary fibrosis and systemic sclerosis. PLoS ONE 8, e53736 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sonnylal, S. et al. Postnatal induction of transforming growth factor β signaling in fibroblasts of mice recapitulates clinical, histologic, and biochemical features of scleroderma. Arthritis Rheum. 56, 334–344 (2007).

    CAS  PubMed  Google Scholar 

  13. Hoyles, R. K. et al. An essential role for resident fibroblasts in experimental lung fibrosis is defined by lineage-specific deletion of high-affinity type II transforming growth factor receptor. Am. J. Respir. Crit. Care Med. 183, 249–261 (2011).

    CAS  PubMed  Google Scholar 

  14. Goh, N. S. et al. Increased epithelial permeability in pulmonary fibrosis in relation to disease progression. Eur. Respir. J. 38, 184–190 (2011).

    CAS  PubMed  Google Scholar 

  15. Bartis, D., Mise, N., Mahida, R. Y., Eickelberg, O. & Thickett, D. R. Epithelial-mesenchymal transition in lung development and disease: does it exist and is it important? Thorax 69, 760–765 (2014).

    PubMed  Google Scholar 

  16. Denton, C. P. et al. Activation of key profibrotic mechanisms in transgenic fibroblasts expressing kinase-deficient type II TGF-β receptor. J. Biol. Chem. 280, 16053–16065 (2005).

    CAS  PubMed  Google Scholar 

  17. Denton, C. P. et al. Fibroblast-specific expression of a kinase-deficient type II transforming growth factor β receptor leads to paradoxical activation of TGFβ signaling pathways with fibrosis in transgenic mice. J. Biol. Chem. 278, 25109–25119 (2003).

    CAS  PubMed  Google Scholar 

  18. Derrett-Smith, E. et al. Endothelial injury in a transforming growth factor β-dependent mouse model of scleroderma induces pulmonary arterial hypertension. Arthritis Rheum. 65, 2928–2239 (2013).

    CAS  PubMed  Google Scholar 

  19. Nihtyanova, S. I. et al. Prediction of pulmonary complications and long-term survival in systemic sclerosis. Arthritis Rheumatol. 66, 1625–1635 (2014).

    PubMed  Google Scholar 

  20. Nihtyanova, S. I. & Denton, C. P. Autoantibodies as predictive tools in systemic sclerosis. Nat. Rev. Rheumatol. 6, 112–116 (2010).

    CAS  PubMed  Google Scholar 

  21. Giovannetti, A. et al. Analyses of T cell phenotype and function reveal an altered T cell homeostasis in systemic sclerosis. Correlations with disease severity and phenotypes. Clin. Immunol. 137, 122–133 (2010).

    CAS  PubMed  Google Scholar 

  22. Pechkovsky, D. V. et al. Alternatively activated alveolar macrophages in pulmonary fibrosis-mediator production and intracellular signal transduction. Clin. Immunol. 137, 89–101 (2010).

    CAS  PubMed  Google Scholar 

  23. Dieud, P. et al. NLRP1 influences the systemic sclerosis phenotype: a new clue for the contribution of innate immunity in systemic sclerosis-related fibrosing alveolitis pathogenesis. Ann. Rheum. Dis. 70, 668–674 (2011).

    Google Scholar 

  24. Beirne, P. et al. Multiplex immune serum biomarker profiling in sarcoidosis and systemic sclerosis. Eur. Respir. J. 34, 1376–1382 (2009).

    CAS  PubMed  Google Scholar 

  25. Fonseca, C. et al. A polymorphism in the CTGF promoter region associated with systemic sclerosis. N. Engl. J. Med. 357, 1210–1220 (2007).

    CAS  PubMed  Google Scholar 

  26. Bossini-Castillo, L. et al. A multicenter study confirms CD226 gene association with systemic sclerosis-related pulmonary fibrosis. Arthritis Res. Ther. 14, R85 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gorlova, O. et al. Identification of novel genetic markers associated with clinical phenotypes of systemic sclerosis through a genome-wide association strategy. PLoS Genet. 7, e1002178 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Cénit, M. C. et al. Influence of the IL6 gene in susceptibility to systemic sclerosis. J. Rheumatol. 39, 2294–2302 (2012).

    PubMed  Google Scholar 

  29. De Lauretis, A. et al. Serum interleukin 6 is predictive of early functional decline and mortality in interstitial lung disease associated with systemic sclerosis. J. Rheumatol. 40, 435–446 (2013).

    CAS  PubMed  Google Scholar 

  30. Cottin, V., Significance of connective tissue disease features in pulmonary fibrosis. Eur. Resp. Rev. 22, 273–280 (2013).

    Google Scholar 

  31. Tsuchiya, Y. et al. Lung diseases directly associated with rheumatoid arthritis and their relationship to outcome. Eur. Respir. J. 37, 1411–1417 (2011).

    CAS  PubMed  Google Scholar 

  32. Szodoray, P. et al. Distinct phenotypes in mixed connective tissue disease: subgroups and survival. Lupus 21, 1412–1422 (2012).

    CAS  PubMed  Google Scholar 

  33. Kim, E. J. et al. Usual interstitial pneumonia in rheumatoid arthritis-associated interstitial lung disease. Eur. Respir. J. 35, 1322–1328 (2010).

    CAS  PubMed  Google Scholar 

  34. Fischer, A., West, S. G., Swigris, J. J., Brown, K. K. & du Bois, R. M. Connective tissue disease-associated interstitial lung disease: a call for clarification. Chest 138, 251–256 (2010).

    PubMed  PubMed Central  Google Scholar 

  35. Mira-Avendano, I. C. et al. A retrospective review of clinical features and treatment outcomes in steroid-resistant interstitial lung disease from polymyositis/ dermatomyositis. Respir. Med. 107, 890–896 (2013).

    PubMed  Google Scholar 

  36. Gunnarsson, R. et al. Prevalence and severity of interstitial lung disease in mixed connective tissue disease: a nationwide, cross-sectional study. Ann. Rheum. Dis. 71, 1966–1972 (2012).

    PubMed  Google Scholar 

  37. Kobayashi, H. et al. Clinicopathological features of pure mica pneumoconiosis associated with Sjögren syndrome. Am. J. Ind. Med. 45, 246–250 (2004).

    PubMed  Google Scholar 

  38. Yamadori, I. et al. Nonspecific interstitial pneumonia as pulmonary involvement of primary Sjögren's syndrome. Rheumatol. Int. 22, 89–92 (2002).

    CAS  PubMed  Google Scholar 

  39. Travis, W. D. et al. An official American Thoracic Society/ European Respiratory Society statement: update on the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am. J. Respir. Crit. Care Med. 188, 733–748 (2013).

    PubMed  PubMed Central  Google Scholar 

  40. Tansey, D. et al. Variations in histological patterns of interstitial pneumonia between connective tissue disorders and their relationship to prognosis. Histopathology 44, 585–596 (2004).

    CAS  PubMed  Google Scholar 

  41. Bjoraker, J. A. et al. Prognostic significance of histopathologic subsets in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 157, 199–203 (1998).

    CAS  PubMed  Google Scholar 

  42. Bouros, D. et al. Histopathologic subsets of fibrosing alveolitis in patients with systemic sclerosis and their relationship to outcome. Am. J. Respir. Crit. Care Med. 165, 1581–1586 (2002).

    PubMed  Google Scholar 

  43. Douglas, W. W. et al. Polymyositis-dermatomyositis-associated interstitial lung disease. Am. J. Respir. Crit. Care Med. 164, 1182–1185 (2001).

    CAS  PubMed  Google Scholar 

  44. Ito, I. et al. Pulmonary manifestations of primary Sjögren's syndrome: a clinical, radiologic, and pathologic study. Am. J. Respir. Crit. Care Med. 171, 632–638 (2005).

    PubMed  Google Scholar 

  45. Fischer, A. et al. Clinically significant interstitial lung disease in limited scleroderma: histopathology, clinical features, and survival. Chest 134, 601–605 (2008).

    PubMed  Google Scholar 

  46. Nakamura, Y. et al. Rheumatoid lung disease: prognostic analysis of 54 biopsy-proven cases. Respir. Med. 106, 1164–1169 (2012).

    PubMed  Google Scholar 

  47. Song, J. W. et al. Pathologic and radiologic differences between idiopathic and collagen vascular disease-related usual interstitial pneumonia. Chest 136, 23–30 (2009).

    PubMed  Google Scholar 

  48. Flaherty, K. R. et al. Fibroblastic foci in usual interstitial pneumonia: idiopathic versus collagen vascular disease. Am. J. Respir. Crit. Care Med. 15, 1410–1415 (2003).

    Google Scholar 

  49. Park, J. H. et al. Prognosis of fibrotic interstitial pneumonia: idiopathic versus collagen vascular disease-related subtypes. Am. J. Respir. Crit. Care Med. 175, 705–711 (2007).

    PubMed  Google Scholar 

  50. Assayag, D. et al. Rheumatoid-arthritis-associated interstitial lung disease: radiological identification of usual interstitial pneumonia pattern. Radiology 270, 583–588 (2014).

    PubMed  PubMed Central  Google Scholar 

  51. Strange, C. & Highland, K. B. Interstitial lung disease in the patient who has connective tissue disease. Clin. Chest Med. 25, 549–559 (2004).

    PubMed  Google Scholar 

  52. Mittoo, S. et al. Ascertainment of collagen vascular disease in patients presenting with interstitial lung disease. Respir. Med. 103, 1152–1158 (2009).

    PubMed  Google Scholar 

  53. Romagnoli, M. et al. Idiopathic nonspecific interstitial pneumonia: an interstitial lung disease associated with autoimmune disorders? Eur. Respir. J. 38, 384–391 (2011).

    CAS  PubMed  Google Scholar 

  54. Kinder, B. W. et al. Idiopathic nonspecific interstitial pneumonia: lung manifestation of undifferentiated connective tissue disease? Am. J. Respir. Crit. Care Med. 176, 691–697 (2007).

    PubMed  PubMed Central  Google Scholar 

  55. Mosca, M., Neri, R. & Bombardieri, S. Undifferentiated connective tissue diseases (UCTD): a review of the literature and a proposal for preliminary classification criteria. Clin. Exp. Rheumatol. 17, 15–20 (1999).

    Google Scholar 

  56. Corte, T. J. et al. Significance of connective tissue disease features in idiopathic interstitial pneumonia. Eur. Respir. J. 39, 661–668 (2012).

    CAS  PubMed  Google Scholar 

  57. Fischer, A. et al. Anti-th/to positivity in a cohort of patients with idiopathic pulmonary fibrosis. J. Rheumatol. 33, 1600–1605 (2006).

    PubMed  Google Scholar 

  58. Vij, R., Noth, I. & Strek, M. E. Autoimmune-featured interstitial lung disease: a distinct entity. Chest 140, 1292–1299 (2011).

    PubMed  PubMed Central  Google Scholar 

  59. Collard, H. R. et al. Acute exacerbations of idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 176, 636–643 (2007).

    PubMed  Google Scholar 

  60. Parambil, J. G., Myers, J. L., Aubry, M. C. & Ryu, J. H. Causes and prognosis of diffuse alveolar damage diagnosed on surgical lung biopsy. Chest 132, 50–57 (2007).

    PubMed  Google Scholar 

  61. Park, I. N. et al. Acute exacerbation of interstitial pneumonia other than idiopathic pulmonary fibrosis. Chest 132, 214–220 (2007).

    PubMed  Google Scholar 

  62. Suda, T. et al. Acute exacerbation of interstitial pneumonia associated with collagen vascular diseases. Respir. Med. 103, 846–853 (2009).

    PubMed  PubMed Central  Google Scholar 

  63. Tachikawa, R. et al. Clinical features and outcome of acute exacerbation of interstitial pneumonia: collagen vascular diseases-related versus idiopathic. Respiration 83, 20–27 (2012).

    PubMed  Google Scholar 

  64. Wells, A. U. Pulmonary function tests in connective tissue disease. Semin. Respir. Crit. Care Med. 28, 379–388 (2007).

    PubMed  Google Scholar 

  65. Franquet, T., Giménez, A., Monill, J. M., Díaz, C. & Geli, C. Primary Sjögren's syndrome and associated lung disease: CT findings in 50 patients. AJR Am. J. Roentgenol. 169, 655–658 (1997).

    CAS  PubMed  Google Scholar 

  66. Fenlon, H. M., Doran, M., Sant, S. M. & Breatnach, E. High-resolution chest CT in systemic lupus erythematosus. AJR Am. J. Roentgenol. 166, 301–307 (1996).

    CAS  PubMed  Google Scholar 

  67. Dawson, J. K., Fewins, H. E., Desmond, J., Lynch, M. P. & Graham, D. R. Fibrosing alveolitis in patients with rheumatoid arthritis as assessed by high resolution computed tomography, chest radiography, and pulmonary function tests. Thorax 56, 622–627 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Hyland, R. H. et al. A systematic controlled study of pulmonary abnormalities in rheumatoid arthritis. J. Rheumatol. 10, 395–405 (1983).

    CAS  PubMed  Google Scholar 

  69. Jurik, A. G., Davidsen, D. & Graudal, H. Prevalence of pulmonary involvement in rheumatoid arthritis and its relationship to some characteristics of the patients. A radiological and clinical study. Scand. J. Rheumatol. 11, 217–224 (1982).

    CAS  PubMed  Google Scholar 

  70. Goh, N. S. et al. Interstitial lung disease in systemic sclerosis: a simple staging system. Am. J. Respir. Crit. Care Med. 177, 1248–1254 (2008).

    PubMed  Google Scholar 

  71. Coghlan, J. G. et al. Evidence-based detection of pulmonary arterial hypertension in systemic sclerosis: the DETECT study. Ann. Rheum. Dis. 73, 1340–1349 (2014).

    PubMed  Google Scholar 

  72. Cottin, V. et al. Combined pulmonary fibrosis and emphysema syndrome in connective tissue disease. Arthritis Rheum. 63, 295–304 (2011).

    PubMed  Google Scholar 

  73. Cottin, V. & Cordier, J. F. Combined pulmonary fibrosis and emphysema in connective tissue disease. Curr. Opin. Pulm. Med. 18, 418–427 (2012).

    PubMed  Google Scholar 

  74. Steen, V. D., Conte, C., Owens, G. R. & Medsger T. A. Jr. Severe restrictive lung disease in systemic sclerosis. Arthritis Rheum. 37, 1283–1289 (1994).

    CAS  PubMed  Google Scholar 

  75. Steen V. & Medsger T. A. Jr. Severe organ involvement in systemic sclerosis with diffuse scleroderma. Arthritis Rheum. 43, 2437–2444 (2000).

    CAS  PubMed  Google Scholar 

  76. Zappala, C. J. et al. Marginal decline in forced vital capacity is associated with a poor outcome in idiopathic pulmonary fibrosis. Eur. Respir. J. 35, 830–836 (2010).

    CAS  PubMed  Google Scholar 

  77. Richeldi, L. et al. Relative versus absolute change in forced vital capacity in idiopathic pulmonary fibrosis. Thorax 67, 407–411 (2012).

    PubMed  Google Scholar 

  78. Moore, O. A. et al. Extent of disease on high-resolution computed tomography lung is a predictor of decline and mortality in systemic sclerosis-related interstitial lung disease. Rheumatology (Oxford) 52, 155–160 (2013).

    Google Scholar 

  79. Tashkin, D. P. et al. Cyclophosphamide versus placebo in scleroderma lung disease. N. Engl. J. Med. 354, 2655–2666 (2006).

    CAS  PubMed  Google Scholar 

  80. Hasegawa, M. et al. Use of serum clara cell 16-kDa (CC16) levels as a potential indicator of active pulmonary fibrosis in systemic sclerosis. J. Rheumatol. 38, 877–884 (2011).

    CAS  PubMed  Google Scholar 

  81. Bonella, F. et al. Surfactant protein D and KL-6 serum levels in systemic sclerosis: correlation with lung and systemic involvement. Sarcoidosis Vasc. Diffuse Lung Dis. 28, 27–33 (2011).

    CAS  PubMed  Google Scholar 

  82. Goh, N. S. et al. Bronchoalveolar lavage cellular profiles in patients with systemic sclerosis-associated interstitial lung disease are not predictive of disease progression. Arthritis Rheum. 56, 2005–2012 (2007).

    PubMed  Google Scholar 

  83. Strange, C. et al. Bronchoalveolar lavage and response to cyclophosphamide in scleroderma interstitial lung disease. Am. J. Respir. Crit. Care Med. 177, 91–98 (2008).

    CAS  PubMed  Google Scholar 

  84. Hoyles, R. K. et al. A multicenter, prospective, randomized, double-blind, placebo-controlled trial of corticosteroids and intravenous cyclophosphamide followed by oral azathioprine for the treatment of pulmonary fibrosis in scleroderma. Arthritis Rheum. 54, 3962–3970 (2006).

    CAS  PubMed  Google Scholar 

  85. Seibold, J. R. et al. Randomized, prospective, placebo-controlled trial of bosentan in interstitial lung disease secondary to systemic sclerosis. Arthritis Rheum. 62, 2101–2108 (2010).

    CAS  PubMed  Google Scholar 

  86. Kowal-Bielecka, O. et al. EULAR recommendations for the treatment of systemic sclerosis: a report from the EULAR Scleroderma Trials and Research group (EUSTAR). Ann. Rheum. Dis. 68, 620–628 (2009).

    CAS  PubMed  Google Scholar 

  87. Tashkin, D. P. et al. Effects of 1-year treatment with cyclophosphamide on outcomes at 2 years in scleroderma lung disease. Am. J. Respir. Crit. Care Med. 176, 1026–1034 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Fischer, A. et al. Mycophenolate mofetil improves lung function in connective tissue disease-associated interstitial lung disease. J. Rheumatol. 40, 640–646 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. White, B., Moore, W. C., Wigley, F. M., Xiao, H. Q. & Wise, R. A. Cyclophosphamide is associated with pulmonary function and survival benefit in patients with scleroderma and alveolitis. Ann. Intern. Med. 132, 947–954 (2000).

    CAS  PubMed  Google Scholar 

  90. Steen V. D. & Medsger T. A. Jr. Case–control study of corticosteroids and other drugs that could precipitate or protect from the development of scleroderma renal crisis. Arthritis Rheum. 41, 1613–1619 (1998).

    CAS  PubMed  Google Scholar 

  91. DeMarco, P. J. et al. Predictors and outcomes of scleroderma renal crisis: the high-dose versus low-dose D-penicillamine in early diffuse systemic sclerosis trial. Arthritis Rheum. 46, 2983–2989 (2002).

    CAS  PubMed  Google Scholar 

  92. Nawata, Y. et al. Corticosteroid resistant interstitial pneumonitis in dermatomyositis/ polymyositis: prediction and treatment with cyclosporine. J. Rheumatol. 26, 1527–1533 (1999).

    CAS  PubMed  Google Scholar 

  93. Marie, I. et al. Interstitial lung disease in polymyositis and dermatomyositis. Arthritis Rheum. 47, 614–622 (2002).

    CAS  PubMed  Google Scholar 

  94. Raghu, G. et al. Prednisolone, azathioprine and N-acetylcysteine for pulmonary fibrosis. N. Engl. J. Med. 366, 1968–1977 (2012).

    CAS  PubMed  Google Scholar 

  95. Demedts, M. et al. High dose acetylcysteine in idiopathic pulmonary fibrosis. N. Engl. J. Med. 353, 2229–2242 (2005).

    CAS  PubMed  Google Scholar 

  96. Noble, P. W. et al. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet 377, 1760–1769 (2011).

    CAS  PubMed  Google Scholar 

  97. Burt, R. K. et al. Autologous non-myeloablative haemopoietic stem-cell transplantation compared with pulse cyclophosphamide once per month for systemic sclerosis (ASSIST): an open-label, randomised phase 2 trial. Lancet 378, 498–506 (2011).

    CAS  PubMed  Google Scholar 

  98. Nash, R. A. et al. High-dose immunosuppressive therapy and autologous hematopoietic cell transplantation for severe systemic sclerosis: long-term follow-up of the US multicenter pilot study. Blood 110, 1388–1396 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Sem, M., Molberg, O., Lund, M. B. & Gran, J. T. Rituximab treatment of the anti-synthetase syndrome: a retrospective case series. Rheumatology 48, 968–971 (2009).

    CAS  PubMed  Google Scholar 

  100. Daoussis, D. et al. Experience with rituximab in scleroderma: results from a 1-year, proof-of-principle study. Rheumatology 49, 271–280 (2010).

    CAS  PubMed  Google Scholar 

  101. Daoussis, D. et al. Effect of long-term treatment with rituximab on pulmonary function and skin fibrosis in patients with diffuse systemic sclerosis. Clin. Exp. Rheumatol. 30, S17–S22 (2012).

    PubMed  Google Scholar 

  102. Keir, G. J. et al. Severe interstitial lung disease in connective tissue disease: rituximab as rescue therapy. Eur. Respir. J. 40, 641–648 (2012).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors of this Review are supported by the NIHR Respiratory Disease Biomedical Research Unit at the Royal Brompton and Harefield NHS Foundation Trust and Imperial College London.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to Athol U. Wells.

Ethics declarations

Competing interests

A.U.W. declares the following competing interests: consultancy fees from Boehringer Ingelheim, Genentech, Gilead, Intermune, MedImmune, Takeda; and honoraria from Actelion Pharmaceuticals, Beohringer Ingelheim and Intermune. C.P.D. declares that he has received consultancy fees, honoraria and research funding from Actelion Pharmaceuticals, and consultancy fees and honoraria from GlaxoSmithKline, Merck-Serono, Novartis, Pfizer and Sanofi-Aventis.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wells, A., Denton, C. Interstitial lung disease in connective tissue disease—mechanisms and management. Nat Rev Rheumatol 10, 728–739 (2014). https://doi.org/10.1038/nrrheum.2014.149

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2014.149

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing