Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Improving cardiovascular and renal outcomes in gout: what should we target?

Key Points

  • Epidemiological studies have repeatedly shown that hyperuricaemia and gout are independent risk factors for cardiovascular disease

  • Longitudinal studies have shown that serum uric acid (SUA) level is an independent risk factor for the onset and progression of kidney disease

  • The mechanisms underlying these comorbidities probably involve low-grade systemic inflammation and xanthine oxidase activity, as well as the direct deleterious effect of hyperuricaemia

  • In some patients, lowering SUA levels might decrease blood pressure and ameliorate kidney function

  • Xanthine oxidase inhibition could ameliorate cardiovascular and renal comorbidities, through its dual roles in lowering SUA levels and scavenging free radicals during uric acid formation

  • Whether reducing the systemic inflammation associated with gout might improve cardiovascular or renal outcomes remains to be determined

Abstract

Epidemiological and experimental studies have shown that hyperuricaemia and gout are intricately linked with hypertension, metabolic syndrome, chronic kidney disease and cardiovascular disease. A number of studies suggest that hyperuricaemia and gout are independent risk factors for the development of these conditions and that these conditions account, in part, for the increased mortality rate of patients with gout. In this Review, we first discuss the links between hyperuricaemia, gout and these comorbidities, and present the mechanisms by which uric acid production and gout might favour the development of cardiovascular and renal diseases. We then emphasize the potential benefit of urate-lowering therapies on cardiovascular and renal outcomes in patients with hyperuricaemia. The mechanisms that link elevated serum uric acid levels and gout with these comorbidities seem to be multifactorial, implicating low-grade systemic inflammation and xanthine oxidase (XO) activity, as well as the deleterious effects of hyperuricaemia itself. Patients with asymptomatic hyperuricaemia should be treated by nonpharmacological means to lower their SUA levels. In patients with gout, long-term pharmacological inhibition of XO is a treatment strategy that might also reduce cardiovascular and renal comorbidities, because of its dual effect of lowering SUA levels as well as reducing free-radical production during uric acid formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comorbidities of hyperuricaemia and gout.
Figure 2: Uric acid formation.

Similar content being viewed by others

References

  1. Feig, D. I., Kang, D. H. & Johnson, R. J. Uric acid and cardiovascular risk. N. Engl. J. Med. 359, 1811–1821 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Richette, P. & Bardin, T. Gout. Lancet 375, 318–328 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Bardin, T. & Richette, P. Definition of hyperuricemia and gouty conditions. Curr. Opin. Rheumatol. 26, 186–191 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Kuo, C. F. et al. Significance of serum uric acid levels on the risk of all-cause and cardiovascular mortality. Rheumatology (Oxford) 52, 127–134 (2013).

    Article  CAS  Google Scholar 

  5. Abbott, R. D., Brand, F. N., Kannel, W. B. & Castelli, W. P. Gout and coronary heart disease: the Framingham Study. J. Clin. Epidemiol. 41, 237–242 (1988).

    Article  CAS  PubMed  Google Scholar 

  6. Krishnan, E., Baker, J. F., Furst, D. E. & Schumacher, H. R. Gout and the risk of acute myocardial infarction. Arthritis Rheum. 54, 2688–2696 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Choi, H. K. & Curhan, G. Independent impact of gout on mortality and risk for coronary heart disease. Circulation 116, 894–900 (2007).

    Article  PubMed  Google Scholar 

  8. De Vera, M. A., Rahman, M. M., Bhole, V., Kopec, J. A. & Choi, H. K. Independent impact of gout on the risk of acute myocardial infarction among elderly women: a population-based study. Ann. Rheum. Dis. 69, 1162–1164 (2010).

    Article  PubMed  Google Scholar 

  9. Baker, J. F., Schumacher, H. R. & Krishnan, E. Serum uric acid level and risk for peripheral arterial disease: analysis of data from the multiple risk factor intervention trial. Angiology 58, 450–457 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Krishnan, E. Gout and the risk for incident heart failure and systolic dysfunction. BMJ Open 15, e000282 (2012).

    Article  Google Scholar 

  11. Seminog, O. O. & Goldacre, M. J. Gout as a risk factor for myocardial infarction and stroke in England: evidence from record linkage studies. Rheumatology (Oxford) 52, 2251–2259 (2013).

    Article  Google Scholar 

  12. Lottmann, K., Chen, X. & Schadlich, P. K. Association between gout and all-cause as well as cardiovascular mortality: a systematic review. Curr. Rheumatol. Rep. 14, 195–203 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Stack, A. G. et al. Independent and conjoint associations of gout and hyperuricaemia with total and cardiovascular mortality. QJM 106, 647–658 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Teng, G. G. et al. Mortality due to coronary heart disease and kidney disease among middle-aged and elderly men and women with gout in the Singapore Chinese Health Study. Ann. Rheum. Dis. 71, 924–928 (2012).

    Article  PubMed  Google Scholar 

  15. Perez-Ruiz, F. et al. Tophaceous gout and high level of hyperuricaemia are both associated with increased risk of mortality in patients with gout. Ann. Rheum. Dis. 73, 177–182 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Kim, S. Y. et al. Hyperuricemia and coronary heart disease: a systematic review and meta-analysis. Arthritis Care Res. (Hoboken) 62, 170–180 (2010).

    Google Scholar 

  17. Chen, S. Y., Chen, C. L. & Shen, M. L. Severity of gouty arthritis is associated with Q-wave myocardial infarction: a large-scale, cross-sectional study. Clin. Rheumatol. 26, 308–313 (2007).

    Article  PubMed  Google Scholar 

  18. Culleton, B. F., Larson, M. G., Kannel, W. B. & Levy, D. Serum uric acid and risk for cardiovascular disease and death: the Framingham Heart Study. Ann. Intern. Med. 131, 7–13 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Kim, S. Y. et al. Hyperuricemia and risk of stroke: a systematic review and meta-analysis. Arthritis Rheum. 61, 885–892 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Grayson, P. C., Kim, S. Y., LaValley, M. & Choi, H. K. Hyperuricemia and incident hypertension: a systematic review and meta-analysis. Arthritis Care Res. (Hoboken) 63, 102–110 (2010).

    Article  CAS  Google Scholar 

  21. Zhang, W. et al. Plasma uric acid and hypertension in a Chinese community: prospective study and metaanalysis. Clin. Chem. 55, 2026–2034 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Gaffo, A. L. et al. Serum urate association with hypertension in young adults: analysis from the Coronary Artery Risk Development in Young Adults cohort. Ann. Rheum. Dis. 72, 1321–1327 (2013).

    Article  PubMed  Google Scholar 

  23. Loeffler, L. F., Navas-Acien, A., Brady, T. M., Miller, E. R. 3rd & Fadrowski, J. J. Uric acid level and elevated blood pressure in US adolescents: National Health and Nutrition Examination Survey, 1999–2006. Hypertension 59, 811–817 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Mazzali, M. et al. Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism. Am. J. Physiol. Renal Physiol. 282, F991–F997 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Sanchez-Lozada, L. G. et al. Mild hyperuricemia induces glomerular hypertension in normal rats. Am. J. Physiol. Renal Physiol. 283, F1105–F1110 (2002).

    Article  PubMed  Google Scholar 

  26. Choi, H. K., Ford, E. S., Li, C. & Curhan, G. Prevalence of the metabolic syndrome in patients with gout: the Third National Health and Nutrition Examination Survey. Arthritis Rheum. 57, 109–115 (2007).

    Article  PubMed  Google Scholar 

  27. Lv, Q. et al. High serum uric acid and increased risk of type 2 diabetes: a systemic review and meta-analysis of prospective cohort studies. PLoS ONE 8, e56864 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Quinones Galvan, A. et al. Effect of insulin on uric acid excretion in humans. Am. J. Physiol. 268, E1–E5 (1995).

    CAS  PubMed  Google Scholar 

  29. Kodama, S. et al. Association between serum uric acid and development of type 2 diabetes. Diabetes Care 32, 1737–1742 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Viazzi, F., Leoncini, G., Vercelli, M., Deferrari, G. & Pontremoli, R. Serum uric acid levels predict new-onset type 2 diabetes in hospitalized patients with primary hypertension: the MAGIC study. Diabetes Care 34, 126–128 (2011).

    Article  PubMed  Google Scholar 

  31. Bhole, V., Choi, J. W., Kim, S. W, de Vera, M. & Choi, H. Serum uric acid levels and the risk of type 2 diabetes: a prospective study. Am. J. Med. 123, 957–961 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Onat, A. et al. Serum uric acid is a determinant of metabolic syndrome in a population-based study. Am. J. Hypertens. 19, 1055–1062 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, J. Y. et al. Predictive value of serum uric acid levels for the diagnosis of metabolic syndrome in adolescents. J. Pediatr. 161, 753–756.e2 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Reungjui, S., Pratipanawatr, T., Johnson, R. & Nakagawa, T. Do thiazides worsen metabolic syndrome and renal disease? The pivotal roles for hyperuricemia and hypokalemia. Curr. Opin. Nephrol. Hypertens. 17, 470–476 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cox, C. L. et al. Consumption of fructose- but not glucose-sweetened beverages for 10 weeks increases circulating concentrations of uric acid, retinol binding protein-4, and gamma-glutamyl transferase activity in overweight/obese humans. Nutr. Metab. (Lond.) 9, 68 (2012).

    Article  CAS  Google Scholar 

  36. Sanchez-Lozada, L. G. et al. Fructose-induced metabolic syndrome is associated with glomerular hypertension and renal microvascular damage in rats. Am. J. Physiol. Renal Physiol. 292, F423–F429 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Perez-Pozo, S. E. et al. Excessive fructose intake induces the features of metabolic syndrome in healthy adult men: role of uric acid in the hypertensive response. Int. J. Obes. (Lond.) 34, 454–461 (2010).

    Article  CAS  Google Scholar 

  38. Choi, H. K. & Curhan, G. Soft drinks, fructose consumption, and the risk of gout in men: prospective cohort study. BMJ 336, 309–312 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Choi, H. K., Willett, W. & Curhan, G. Fructose-rich beverages and risk of gout in women. JAMA 304, 2270–2278 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. So, A. & Thorens, B. Uric acid transport and disease. J. Clin. Invest. 120, 1791–1799 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhu, Y., Pandya, B. J. & Choi, H. K. Comorbidities of gout and hyperuricemia in the US general population: NHANES 2007–2008. Am. J. Med. 125, 679–687.e1 (2011).

    Article  Google Scholar 

  42. Jalal, D. I., Chonchol, M., Chen, W. & Targher, G. Uric acid as a target of therapy in CKD. Am. J. Kidney Dis. 61, 134–146 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Johnson, R. J. et al. Uric acid and chronic kidney disease: which is chasing which? Nephrol. Dial. Transplant. 28, 2221–2228 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Umekawa, T., Chegini, N. & Khan, S. R. Increased expression of monocyte chemoattractant protein-1 (MCP-1) by renal epithelial cells in culture on exposure to calcium oxalate, phosphate and uric acid crystals. Nephrol. Dial. Transplant. 18, 664–669 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Omori, H. et al. Use of xanthine oxidase inhibitor febuxostat inhibits renal interstitial inflammation and fibrosis in unilateral ureteral obstructive nephropathy. Clin. Exp. Nephrol. 16, 549–556 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Sanchez-Lozada, L. G. et al. Effects of febuxostat on metabolic and renal alterations in rats with fructose-induced metabolic syndrome. Am. J. Physiol. Renal Physiol. 294, F710–F718 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Kosugi, T. et al. Effect of lowering uric acid on renal disease in the type 2 diabetic db/db mice. Am. J. Physiol. Renal Physiol. 297, F481–F488 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pascual, E. Persistence of monosodium urate crystals and low-grade inflammation in the synovial fluid of patients with untreated gout. Arthritis Rheum. 34, 141–145 (1991).

    Article  CAS  PubMed  Google Scholar 

  49. Perez-Ruiz, F. Treating to target: a strategy to cure gout. Rheumatology (Oxford) 48 (Suppl. 2), ii9–ii14 (2009).

    CAS  Google Scholar 

  50. Dalbeth, N. et al. Cellular characterization of the gouty tophus: a quantitative analysis. Arthritis Rheum. 62, 1549–1556 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Schlesinger, N. et al. Canakinumab for acute gouty arthritis in patients with limited treatment options: results from two randomised, multicentre, active-controlled, double-blind trials and their initial extensions. Ann. Rheum. Dis. 71, 1839–1848 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Chowalloor, P. V. & Keen, H. I. A systematic review of ultrasonography in gout and asymptomatic hyperuricaemia. Ann. Rheum. Dis. 72, 638–645 (2013).

    Article  PubMed  Google Scholar 

  53. Pineda, C. et al. Joint and tendon subclinical involvement suggestive of gouty arthritis in asymptomatic hyperuricemia: an ultrasound controlled study. Arthritis Res. Ther. 13, R4 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Puig, J. G. et al. Asymptomatic hyperuricemia: impact of ultrasonography. Nucleosides Nucleotides Nucleic Acids 27, 592–595 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Daskalopoulou, S. S., Tzovaras, V., Mikhailidis, D. P. & Elisaf, M. Effect on serum uric acid levels of drugs prescribed for indications other than treating hyperuricaemia. Curr. Pharm. Des. 11, 4161–4175 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Kelkar, A., Kuo, A. & Frishman, W. H. Allopurinol as a cardiovascular drug. Cardiol. Rev. 19, 265–271 (2011).

    Article  PubMed  Google Scholar 

  57. Chen, X., Wu, G. & Schwarzschild, M. A. Urate in Parkinson's disease: more than a biomarker? Curr. Neurol. Neurosci. Rep. 12, 367–375 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Hershfield, M. S. et al. Treating gout with pegloticase, a PEGylated urate oxidase, provides insight into the importance of uric acid as an antioxidant in vivo. Proc. Natl Acad. Sci. USA 107, 14351–14356 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pacher, P., Nivorozhkin, A. & Szabo, C. Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol. Rev. 58, 87–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Love, B. L., Barrons, R., Veverka, A. & Snider, K. M. Urate-lowering therapy for gout: focus on febuxostat. Pharmacotherapy 30, 594–608 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Malik, U. Z. et al. Febuxostat inhibition of endothelial-bound XO: implications for targeting vascular ROS production. Free Radic. Biol. Med. 51, 179–184 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kaptoge, S. et al. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet 375, 132–140 (2010).

    Article  PubMed  CAS  Google Scholar 

  63. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Inaba, S., Sautin, Y., Garcia, G. E. & Johnson, R. J. What can asymptomatic hyperuricaemia and systemic inflammation in the absence of gout tell us? Rheumatology (Oxford) 52, 963–965 (2013).

    Article  Google Scholar 

  66. Rothenbacher, D. et al. Relationship between inflammatory cytokines and uric acid levels with adverse cardiovascular outcomes in patients with stable coronary heart disease. PLoS ONE 7, e45907 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kanellis, J. et al. Uric acid stimulates monocyte chemoattractant protein-1 production in vascular smooth muscle cells via mitogen-activated protein kinase and cyclooxygenase-2. Hypertension 41, 1287–1293 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Shi, Y., Evans, J. E. & Rock, K. L. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425, 516–521 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Dinarello, C. A., Simon, A. & van der Meer, J. W. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat. Rev. Drug Discov. 11, 633–652 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Higgins, P. et al. Xanthine oxidase inhibition for the treatment of cardiovascular disease: a systematic review and meta-analysis. Cardiovasc. Ther. 30, 217–226 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Rajendra, N. S. et al. Mechanistic insights into the therapeutic use of high-dose allopurinol in angina pectoris. J. Am. Coll. Cardiol. 58, 820–828 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Noman, A., Ang, D. S., Ogston, S., Lang, C. C. & Struthers, A. D. Effect of high-dose allopurinol on exercise in patients with chronic stable angina: a randomised, placebo controlled crossover trial. Lancet 375, 2161–2167 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Thanassoulis, G., Brophy, J. M., Richard, H. & Pilote, L. Gout, allopurinol use, and heart failure outcomes. Arch. Intern. Med. 170, 1358–1364 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Grimaldi-Bensouda, L. et al. Impact of allopurinol on risk of myocardial infarction. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2012-202972 (2014).

  75. Athyros, V. G. et al. Effect of statins versus untreated dyslipidemia on serum uric acid levels in patients with coronary heart disease: a subgroup analysis of the GREek Atorvastatin and Coronary-heart-disease Evaluation (GREACE) study. Am. J. Kidney Dis. 43, 589–599 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Hoieggen, A. et al. The impact of serum uric acid on cardiovascular outcomes in the LIFE study. Kidney Int. 65, 1041–1049 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. George, J., Carr, E., Davies, J., Belch, J. J. & Struthers, A. High-dose allopurinol improves endothelial function by profoundly reducing vascular oxidative stress and not by lowering uric acid. Circulation 114, 2508–2516 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Ogino, K. et al. Uric acid-lowering treatment with benzbromarone in patients with heart failure: a double-blind placebo-controlled crossover preliminary study. Circ. Heart Fail. 3, 73–81 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Harzand, A., Tamariz, L. & Hare, J. M. Uric acid, heart failure survival, and the impact of xanthine oxidase inhibition. Congest. Heart Fail. 18, 179–182 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Gois, P. H. & Souza, E. R. Pharmacotherapy for hyperuricemia in hypertensive patients. Cochrane Database of Systematic Reviews, Issue 1. Art. No.: CD008652. http://dx.doi.org/10.1002/14651858.CD008652.pub2.

  81. Agarwal, V., Hans, N. & Messerli, F. H. Effect of allopurinol on blood pressure: a systematic review and meta-analysis. J. Clin. Hypertens. (Greenwich) 15, 435–442 (2013).

    Article  CAS  Google Scholar 

  82. Feig, D. I., Soletsky, B. & Johnson, R. J. Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: a randomized trial. JAMA 300, 924–932 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Soletsky, B. & Feig, D. I. Uric acid reduction rectifies prehypertension in obese adolescents. Hypertension 60, 1148–1156 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Sezai, A. et al. Comparison of febuxostat and allopurinol for hyperuricemia in cardiac surgery patients (NU-FLASH Trial). Circ. J. 77, 2043–2049 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Kostka-Jeziorny, K., Uruski, P. & Tykarski, A. Effect of allopurinol on blood pressure and aortic compliance in hypertensive patients. Blood Press. 20, 104–110 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Siu, Y. P., Leung, K. T., Tong, M. K. & Kwan, T. H. Use of allopurinol in slowing the progression of renal disease through its ability to lower serum uric acid level. Am. J. Kidney Dis. 47, 51–59 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Goicoechea, M. et al. Effect of allopurinol in chronic kidney disease progression and cardiovascular risk. Clin. J. Am. Soc. Nephrol. 5, 1388–1393 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Miao, Y. et al. Effect of a reduction in uric acid on renal outcomes during losartan treatment: a post hoc analysis of the reduction of endpoints in non-insulin-dependent diabetes mellitus with the Angiotensin II Antagonist Losartan Trial. Hypertension 58, 2–7 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Whelton, A., Macdonald, P. A., Zhao, L., Hunt, B. & Gunawardhana, L. Renal function in gout: long-term treatment effects of febuxostat. J. Clin. Rheumatol. 17, 7–13 (2011).

    Article  PubMed  Google Scholar 

  90. Gibson, T. J. Hypertension, its treatment, hyperuricaemia and gout. Curr. Opin. Rheumatol. 25, 217–222 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Gibson, T., Rodgers, V., Potter, C. & Simmonds, H. A. Allopurinol treatment and its effect on renal function in gout: a controlled study. Ann. Rheum. Dis. 41, 59–65 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nidorf, S. M., Eikelboom, J. W., Budgeon, C. A. & Thompson, P. L. Low-dose colchicine for secondary prevention of cardiovascular disease. J. Am. Coll. Cardiol. 61, 404–410 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Pascual, E. & Castellano, J. A. Treatment with colchicine decreases white cell counts in synovial fluid of asymptomatic knees that contain monosodium urate crystals. J. Rheumatol. 19, 600–603 (1992).

    CAS  PubMed  Google Scholar 

  94. Crittenden, D. B. et al. Colchicine use is associated with decreased prevalence of myocardial infarction in patients with gout. J. Rheumatol. 39, 1458–1464 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nidorf, M. & Thompson, P. L. Effect of colchicine (0.5 mg twice daily) on high-sensitivity C-reactive protein independent of aspirin and atorvastatin in patients with stable coronary artery disease. Am. J. Cardiol. 99, 805–807 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Raju, N. C. et al. Effect of colchicine compared with placebo on high sensitivity C-reactive protein in patients with acute coronary syndrome or acute stroke: a pilot randomized controlled trial. J. Thromb. Thrombolysis 33, 88–94 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Muir, S. W. et al. Allopurinol use yields potentially beneficial effects on inflammatory indices in those with recent ischemic stroke: a randomized, double-blind, placebo-controlled trial. Stroke 39, 3303–3307 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Kanbay, M. et al. Effect of treatment of hyperuricemia with allopurinol on blood pressure, creatinine clearence, and proteinuria in patients with normal renal functions. Int. Urol. Nephrol. 39, 1227–1233 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Yiginer, O. et al. Allopurinol improves endothelial function and reduces oxidant-inflammatory enzyme of myeloperoxidase in metabolic syndrome. Clin. Res. Cardiol. 97, 334–340 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank T. Kielstein and A. K. Tausche for helpful discussion. Editorial assistance for the preparation of this manuscript (copyediting for English language, prior to submission to the journal and before peer-review) was provided by L. Giacomelli (Content Ed Net).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and made a substantial contribution to discussion of content and writing the article. P.R. and T.B. reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Pascal Richette.

Ethics declarations

Competing interests

The authors declare they have received consultancy and/or speaker fees from Abbott (T.L.J.), Ardea Biosciences (F.P.-R., M.D., G.N., A.K.S., T.B.), Astra Zeneca (P.R.), Biocryst (G.N., T.B.), Ipsen (P.R., M.D., T.L.J., G.N., A.K.S., T.B.), Menarini (P.R., F.P.-R., M.D., T.L.J., G.N., E.P., A.K.S., T.B.), Metabolex (F.P.-R.), Novartis (P.R., F.P.-R., M.D., G.N., A.K.S., T.B.), Pfizer (F.P.-R.), Roche (T.L.J.), Sanofi (P.R.), Savient (P.R., F.P.-R. G.N., M.D., E.P., T.B.) and UCB (T.L.J.). F.P.-R. declares he has received grants from Ministerio de Sanidad, Gobierno de España and Asociación de Reumatólogos del Hospital de Cruces. P.R. declares he has received an educational grant from Menarini.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richette, P., Perez-Ruiz, F., Doherty, M. et al. Improving cardiovascular and renal outcomes in gout: what should we target?. Nat Rev Rheumatol 10, 654–661 (2014). https://doi.org/10.1038/nrrheum.2014.124

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2014.124

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing