Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Progress in intra-articular therapy

This article has been updated

Key Points

  • Getting therapeutics into joints in a targeted and sustained fashion is difficult

  • Intra-articular injection solves the delivery problem and brings several additional advantages over systemic administration, including increased bioavailability, reduced systemic exposure, fewer off-target effects and lower costs

  • Soluble drugs exit joints rapidly, via the capillaries (in the case of small molecules) and lymphatic system (for macromolecules)

  • Strategies for extending the intra-articular half-lives of therapeutics include the use of small particles, drug modification and gene transfer

  • Delivery of hyaluronate and corticosteroids accounts for the majority of intra-articular injections; additional therapeutics include recombinant proteins, autologous blood products and analgesics

  • Clinical trials involving the intra-articular injection of mesenchymal stem cells have multiplied enormously in recent years

Abstract

Diarthrodial joints are well suited to intra-articular injection, and the local delivery of therapeutics in this fashion brings several potential advantages to the treatment of a wide range of arthropathies. Possible benefits over systemic delivery include increased bioavailability, reduced systemic exposure, fewer adverse events, and lower total drug costs. Nevertheless, intra-articular therapy is challenging because of the rapid egress of injected materials from the joint space; this elimination is true of both small molecules, which exit via synovial capillaries, and of macromolecules, which are cleared by the lymphatic system. In general, soluble materials have an intra-articular dwell time measured only in hours. Corticosteroids and hyaluronate preparations constitute the mainstay of FDA-approved intra-articular therapeutics. Recombinant proteins, autologous blood products and analgesics have also found clinical use via intra-articular delivery. Several alternative approaches, such as local delivery of cell and gene therapy, as well as the use of microparticles, liposomes, and modified drugs, are in various stages of preclinical development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: How soluble molecules get into and out of joints.
Figure 2: Concentration ratios of proteins between serum and synovial fluid.

Similar content being viewed by others

Change history

  • 29 November 2012

    In the version of this article initially published online, reference 46 was listed incorrectly in the reference list and the in-text citation of reference 23 listed an incorrect year. This error has been corrected for the HTML and PDF versions of the article.

References

  1. International simposium intra articular treatment 2013 isiat.it[online] (2013).

  2. Simkin, P. A. Synovial perfusion and synovial fluid solutes. Ann. Rheum. Dis. 54, 424–428 (1995).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Foy, B. D. & Blake, J. Diffusion of paramagnetically labeled proteins in cartilage: enhancement of the 1-D NMR imaging technique. J. Magn. Reson. 148, 126–134 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Simkin, P. A. Synovial permeability in rheumatoid arthritis. Arthritis Rheum. 22, 689–696 (1979).

    Article  CAS  PubMed  Google Scholar 

  5. Knight, A. D. & Levick, J. R. Morphometry of the ultrastructure of the blood-joint barrier in the rabbit knee. Q. J. Exp. Physiol. 69, 271–288 (1984).

    Article  CAS  PubMed  Google Scholar 

  6. Kushner, I. & Somerville, J. A. Permeability of human synovial membrane to plasma proteins. Relationship to molecular size and inflammation. Arthritis Rheum. 14, 560–570 (1971).

    Article  CAS  PubMed  Google Scholar 

  7. Scanzello, C. R. & Goldring, S. R. The role of synovitis in osteoarthritis pathogenesis. Bone 51, 249–257 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Decker, B., McKenzie, B. F., McGuckin, W. F. & Slocumb, C. H. Comparative distribution of proteins and glycoproteins of serum and synovial fluid. Arthritis Rheum. 2, 162–177 (1959).

    Article  CAS  PubMed  Google Scholar 

  9. Wallis, W. J., Simkin, P. A. & Nelp, W. B. Protein traffic in human synovial effusions. Arthritis Rheum. 30, 57–63 (1987).

    Article  CAS  PubMed  Google Scholar 

  10. Bandara, G. et al. Gene transfer to synoviocytes: prospects for gene treatment of arthritis. DNA Cell Biol. 11, 227–231 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Larsen, C. et al. Intra-articular depot formulation principles: role in the management of postoperative pain and arthritic disorders. J. Pharm. Sci. 97, 4622–4654 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Yuan, F., Quan, L. D., Cui, L., Goldring, S. R. & Wang, D. Development of macromolecular prodrug for rheumatoid arthritis. Adv. Drug Deliv. Rev. 64, 1205–1219 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Anderson, R. et al. Liposomal encapsulation enhances and prolongs the anti-inflammatory effects of water-soluble dexamethasone phosphate in experimental adjuvant arthritis. Arthritis Res. Ther. 12, R147 (2010).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Lavelle, W., Lavelle, E. D. & Lavelle, L. Intra-articular injections. Anesthesiol. Clin. 25, 853–862 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Hollander, J. L., Brown, E. M., Jr, Jessar, R. A. & Brown, C. Y. Hydrocortisone and cortisone injected into arthritic joints; comparative effects of and use of hydrocortisone as a local antiarthritic agent. J. Am. Med. Assoc. 147, 1629–1635 (1951).

    Article  CAS  PubMed  Google Scholar 

  16. Jackson, D. W., Evans, N. A. & Thomas, B. M. Accuracy of needle placement into the intra-articular space of the knee. J. Bone Joint Surg. Am. 84-A, 1522–1527 (2002).

    Article  Google Scholar 

  17. Jones, A. et al. Importance of placement of intra-articular steroid injections. BMJ 307, 1329–1330 (1993).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Simkin, P. A. When is a joint injection accurate? Comment on the article by Cunnington. et al. Arthritis Rheum. 63, 308; author reply 308 (2011).

    Article  PubMed  Google Scholar 

  19. Charalambous, C. P., Tryfonidis, M., Sadiq, S., Hirst, P. & Paul, A. Septic arthritis following intra-articular steroid injection of the knee—a survey of current practice regarding antiseptic technique used during intra-articular steroid injection of the knee. Clin. Rheumatol. 22, 386–390 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Armstrong, R. D., English, J., Gibson, T., Chakraborty, J. & Marks, V. Serum methylprednisolone levels following intra-articular injection of methylprednisolone acetate. Ann. Rheum. Dis. 40, 571–574 (1981).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Derendorf, H., Mollmann, H., Gruner, A., Haack, D. & Gyselby, G. Pharmacokinetics and pharmacodynamics of glucocorticoid suspensions after intra-articular administration. Clin. Pharmacol. Ther. 39, 313–317 (1986).

    Article  CAS  PubMed  Google Scholar 

  22. Creamer, P. Intra-articular corticosteroid treatment in osteoarthritis. Curr. Opin. Rheumatol. 11, 417–421 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Lu, Y. C., Evans, C. H. & Grodzinsky, A. J. Effects of short-term glucocorticoid treatment on changes in cartilage matrix degradation and chondrocyte gene expression induced by mechanical injury and inflammatory cytokines. Arthritis Res. Ther. 13, R142 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Blyth, T, Hunter, J. A. & Stirling, A. Pain relief in the rheumatoid knee after steroid injection: a single-blind comparison of hydrocortisone succinate, and triamcinolone acetonide or hexacetonide. Br. J. Rheumatol. 33, 461–463 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Bird, H. A., Ring, E. F. J. & Bacon, P. A. A thermographic and clinical comparison of three intra-articular steroid preparations in rheumatoid arthritis. Ann. Rheum. Dis. 38, 36–39 (1979).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Zulian, F. et al. Comparison of intra-articular triamcinolone hexacetonide and triamcinolone acetonide in oligoarticular juvenile idiopathic arthritis. Rheumatology (Oxford) 42, 1254–1259 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Hepper, C. T. et al. The efficacy and duration of intra-articular corticosteroid injection for knee osteoarthritis: a systematic review of level I studies. J. Am. Acad. Orthop. Surg. 17, 638–646 (2009).

    Article  PubMed  Google Scholar 

  28. Weitoft, T. & Ronnblom, L. Glucocorticoid resorption and influence on the hypothalamic-pituitary-adrenal axis after intra-articular treatment of the knee in resting and mobile patients. Ann. Rheum. Dis. 65, 955–957 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Colen, S., Haverkamp, D., Mulier, M. & van den Bekerom, M. P. Hyaluronic acid for the treatment of osteoarthritis in all joints except the knee: what is the current evidence? BioDrugs 26, 101–112 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Fraser, J. R., Kimpton, W. G., Pierscionek, B. K. & Cahill, R. N. The kinetics of hyaluronan in normal and acutely inflamed synovial joints: observations with experimental arthritis in sheep. Semin. Arthritis Rheum. 22, 9–17 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Marshall, K. W. Intra-articular hyaluronan therapy. Curr. Opin. Rheumatol. 12, 468–474 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Larsen, N. E., Dursema, H. D., Pollak, C. T. & Skrabut, E. M. Clearance kinetics of a hylan-based viscosupplement after intra-articular and intravenous administration in animal models. J. Biomed. Mater. Res. B Appl. Biomater. 100B, 457–462 (2012).

    Article  CAS  Google Scholar 

  33. Bannuru, R. R., Natov, N. S., Dasi, U. R., Schmid, C. H. & McAlindon, T. E. Therapeutic trajectory following intra-articular hyaluronic acid injection in knee osteoarthritis--meta-analysis. Osteoarthritis Cartilage 19, 611–619 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Rutjes, A. W. et al. Viscosupplementation for osteoarthritis of the knee: a systematic review and meta-analysis. Ann. Intern. Med. 157, 180–191 (2012).

    Article  PubMed  Google Scholar 

  35. Jay, G. D. et al. Prevention of cartilage degeneration and restoration of chondroprotection by lubricin tribosupplementation in the rat following anterior cruciate ligament transection. Arthritis Rheum. 62, 2382–2391 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Marcelino, J. et al. CACP, encoding a secreted proteoglycan, is mutated in camptodactylyl-arthropathy-coxa vara- pericarditis syndrome. Nat. Genet. 23, 319–322 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Coles, J. M. et al. Loss of cartilage, stiffness and frictional properties in mice lacking Pgr4. Arthritis Rheum. 62, 1666–1674 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Jay, G. D. et al. Prevention of cartilage degeneration and restoration of chondroprotection by lubricin tribosupplementation in the rat following ACL transection. Arthritis Rheum. 62, 2382–2391 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Fisher, B. A. & Keat, A. Should we be using intraarticular tumor necrosis factor blockade in inflammatory monoarthritis? J. Rheumatol. 33, 1934–1935 (2006).

    PubMed  Google Scholar 

  40. Sakellariou, G. T., Kakavouli, G. & Chatzigiannis, I. Intraarticular injection of infliximab. J. Rheumatol 33, 1912–1913 (2006).

    PubMed  Google Scholar 

  41. Fioravanti, A., Fabbroni, M., Cerase, A. & Galeazzi, M. Treatment of erosive osteoarthritis of the hands by intra-articular infliximab injections: a pilot study. Rheumatol. Int. 29, 961–965 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Fiocco, U. et al. Synovial effusion and synovial fluid biomarkers in psoriatic arthritis to assess intraarticular tumor necrosis factor-alpha blockade in the knee joint. Arthritis Res. Ther. 12, R148 (2010).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Chevalier, X. et al. Safety study of intraarticular injection of interleukin 1 receptor antagonist in patients with painful knee osteoarthritis: a multicenter study. J. Rheumatol. 32, 1317–1323 (2005).

    CAS  PubMed  Google Scholar 

  44. Chevalier, X. et al. Intraarticular injection of anakinra in osteoarthritis of the knee: a multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum. 61, 344–352 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Mangiapani, D. S. et al. Inhibition of interleukin-1 prevents post-traumatic arthritis following intra-articular fracture in the mouse knee [abstract 0711]. Trans. Orthop. Res. Soc. 36 (2012).

  46. Kraus, V. B. et al. Effects of intraarticular IL1-Ra for acute anterior cruciate ligament knee injury: a randomized controlled pilot trial (NCT00332254). Osteoarthritis Cartilage 20, 271–278 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. US National Library of Medicine. ClinicalTrials.gov[online], (2010).

  48. Hunter, D. J. et al. Phase 1 safety and tolerability study of BMP-7 in symptomatic knee osteoarthritis. BMC Musculoskelet. Disord. 11, 232 (2010).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. US National Library of Medicine. ClinicalTrials.gov[online], (2012).

  50. Sheth, U. et al. Efficacy of autologous platelet-rich plasma use for orthopaedic indications: a metaanalysis. J. Bone Joint Surg. Am. 94, 298–307 (2012).

    Article  PubMed  Google Scholar 

  51. Spakova, T., Rosocha, J., Lacko, M., Harvanova, D. & Gharaibeh, A. Treatment of knee joint osteoarthritis with autologous platelet-rich plasma in comparison with hyaluronic acid. Am. J. Phys. Med. Rehabil. 91, 411–417 (2012).

    Article  PubMed  Google Scholar 

  52. Dragoo, J. L. et al. Comparison of the acute inflammatory response of two commercial platelet-rich plasma systems in healthy rabbit tendons. Am. J. Sports Med. 40, 1274–1281 (2012).

    Article  PubMed  Google Scholar 

  53. US National Library of Medicine. ClinicalTrials.gov[online], (2013).

  54. Woodell-May, J. et al. Autologous protein solution inhibits MMP-13 production by IL-1β and TNF-α-stimulated human articular chondrocytes. J. Orthop. Res. 29, 1320–1326 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Meijer, H., Reinecke, J., Becker, C., Tholen, G. & Wehling, P. The production of anti-inflammatory cytokines in whole blood by physico-chemical induction. Inflamm. Res. 52, 404–407 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Fox, B. A. & Stephens, M. M. Treatment of knee osteoarthritis with Orthokine-derived autologous conditioned serum. Expert Rev. Clin. Immunol. 6, 335–345 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Baltzer, A. W., Moser, C., Jansen, S. A. & Krauspe, R. Autologous conditioned serum (Orthokine) is an effective treatment for knee osteoarthritis. Osteoarthritis Cartilage 17, 152–160 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Boon, A. J. et al. Efficacy of intra-articular botulinum toxin type A in painful knee osteoarthritis: a pilot study. PM R 2, 268–276 (2010).

    Article  PubMed  Google Scholar 

  59. Piper, S. L., Kramer, J. D., Kim, H. T. & Feeley, B. T. Effects of local anesthetics on articular cartilage. Am. J. Sports Med. 39, 2245–2253 (2011).

    Article  PubMed  Google Scholar 

  60. Dragoo, J. L., Braun, H. J., Kim, H. J., Phan, H. D. & Golish, S. R. The in vitro chondrotoxicity of single-dose local anesthetics. Am. J. Sports Med. 40, 794–799 (2012).

    Article  PubMed  Google Scholar 

  61. Chu, C. R. et al. In vivo effects of single intra-articular injection of 0.5% bupivacaine on articular cartilage. J. Bone Joint Surg. Am. 92, 599–608 (2010).

    Article  PubMed  Google Scholar 

  62. Grishko, V., Xu, M., Wilson, G. & Pearsall, A. W. Apoptosis and mitochondrial dysfunction in human chondrocytes following exposure to lidocaine, bupivacaine, and ropivacaine. J. Bone Joint Surg. Am. 92, 609–618 (2010).

    Article  PubMed  Google Scholar 

  63. Piper, S. L. & Kim, H. T. Comparison of ropivacaine and bupivacaine toxicity in human articular chondrocytes. J. Bone Joint Surg. Am. 90, 986–991 (2008).

    Article  PubMed  Google Scholar 

  64. de Silva, M., Hazleman, B. L., Thomas, D. P. & Wraight, P. Liposomes in arthritis: a new approach. Lancet 1, 1320–1322 (1979).

    Article  CAS  PubMed  Google Scholar 

  65. Bonanomi, M. H. et al. Studies of pharmacokinetics and therapeutic effects of glucocorticoids entrapped in liposomes after intraarticular application in healthy rabbits and in rabbits with antigen-induced arthritis. Rheumatol. Int. 7, 203–212 (1987).

    Article  CAS  PubMed  Google Scholar 

  66. Thakkar, H., Kumar Sharma, R. & Murthy, R. S. Enhanced retention of celecoxib-loaded solid lipid nanoparticles after intra-articular administration. Drugs R. D. 8, 275–285 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Burt, H. M., Tsallas, A., Gilchrist, S. & Liang, L. S. Intra-articular drug delivery systems: Overcoming the shortcomings of joint disease therapy. Expert Opin. Drug Deliv. 6, 17–26 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Horisawa, E. et al. Prolonged anti-inflammatory action of DL-lactide/glycolide copolymer nanospheres containing betamethasone sodium phosphate for an intra-articular delivery system in antigen-induced arthritic rabbit. Pharm. Res. 19, 403–410 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Higaki, M., Ishihara, T., Izumo, N., Takatsu, M. & Mizushima, Y. Treatment of experimental arthritis with poly(D, L-lactic/glycolic acid) nanoparticles encapsulating betamethasone sodium phosphate. Ann. Rheum. Dis. 64, 1132–1136 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Liang, L. S., Wong, W. & Burt, H. M. Pharmacokinetic study of methotrexate following intra-articular injection of methotrexate loaded poly(L-lactic acid) microspheres in rabbits. J. Pharm. Sci. 94, 1204–1215 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Tuncay, M. et al. In vitro and in vivo evaluation of diclofenac sodium loaded albumin microspheres. J. Microencapsul. 17, 145–155 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Presumey, J. et al. PLGA microspheres encapsulating siRNA anti-TNFα: efficient RNAi-mediated treatment of arthritic joints. Eur. J. Pharm. Biopharm. 82, 457–464 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Liggins, R. T. et al. Intra-articular treatment of arthritis with microsphere formulations of paclitaxel: biocompatibility and efficacy determinations in rabbits. Inflamm. Res. 53, 363–372 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Bodick, N. et al., FX006 prolongs the residency of triamcinolone acetonide in the synovial tissues of patients with knee osteoarthritis. Osteoarthritis Cart. 21 (Suppl.) S144–S145 (2013).

    Article  Google Scholar 

  75. Floss, D. M., Schallau, K., Rose-John, S., Conrad, U. & Scheller, J. Elastin-like polypeptides revolutionize recombinant protein expression and their biomedical application. Trends Biotechnol. 28, 37–45 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Shamji, M. F. et al. Synthesis and characterization of a thermally-responsive tumor necrosis factor antagonist. J. Control Release 129, 179–186 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Shamji, M. F. et al. Development and characterization of a fusion protein between thermally responsive elastin-like polypeptide and interleukin-1 receptor antagonist: sustained release of a local antiinflammatory therapeutic. Arthritis Rheum. 56, 3650–3661 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Betre, H. et al. A thermally responsive biopolymer for intra-articular drug delivery. J. Control Release 115, 175–182 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Chatzopoulos, D., Moralidis, E., Markou, P. & Makris, V. Yttrium-90 radiation synovectomy in knee osteoarthritis: a prospective assessment at 6 and 12 months. Nucl. Med. Commun. 30, 472–479 (2009).

    Article  PubMed  Google Scholar 

  80. Dos Santos, M. F. et al. Effectiveness of radiation synovectomy with Yttrium-90 and Samarium-153 particulate hydroxyapatite in rheumatoid arthritis patients with knee synovitis: a controlled, randomized, double-blinded trial. Clin. Rheumatol. 30, 77–85 (2011).

    Article  PubMed  Google Scholar 

  81. Rodriguez-Merchan, E. C. Aspects of current management: orthopaedic surgery in haemophilia. Haemophilia 18, 8–16 (2011).

    Article  PubMed  CAS  Google Scholar 

  82. Sojan, S. & Bartholomeusz, D. Cutaneous radiation necrosis as a complication of yttrium-90 synovectomy. Hell. J. Nucl. Med. 8, 58–59 (2005).

    PubMed  Google Scholar 

  83. Kavakli, K. et al. Long-term evaluation of chromosomal breakages after radioisotope synovectomy for treatment of target joints in patients with haemophilia. Haemophilia 16, 474–478 (2010).

    CAS  PubMed  Google Scholar 

  84. Evans, C. H. et al. Gene transfer to human joints: progress toward a gene therapy of arthritis. Proc. Natl Acad. Sci. USA 102, 8698–8703 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Evans, C. H., Gouze, E., Gouze, J. N., Robbins, P. D. & Ghivizzani, S. C. Gene therapeutic approaches-transfer in vivo. Adv. Drug Deliv. Rev. 58, 243–258 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Evans, C. H., Ghivizzani, S. C. & Robbins, P. D. Getting arthritis gene therapy into the clinic. Nat. Rev. Rheumatol. 7, 244–249 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Evans, C. H., Ghivizzani, S. C. & Robbins, P. D. Arthritis gene therapy's first death. Arthritis Res. Ther. 10, 110 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

  88. Barry, F. & Murphy, M. Mesenchymal stem cells in joint disease and repair. Nat. Rev. Rheumatol. 9, 584–594 (2013)

    Article  CAS  PubMed  Google Scholar 

  89. Noth, U., Steinert, A. F. & Tuan, R. S. Technology insight: adult mesenchymal stem cells for osteoarthritis therapy. Nat. Clin. Pract. Rheumatol. 4, 371–380 (2008).

    Article  PubMed  CAS  Google Scholar 

  90. Qi, Y., Feng, G. & Yan, W. Mesenchymal stem cell-based treatment for cartilage defects in osteoarthritis. Mol. Biol. Rep. 39, 5683–5689 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Coleman, C. M., Curtin, C., Barry, F. P., O'Flatharta, C. & Murphy, J. M. Mesenchymal stem cells and osteoarthritis: remedy or accomplice? Hum. Gene Ther. 21, 1239–1250 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Murphy, J. M., Fink, D. J., Hunziker, E. B. & Barry, F. P. Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum. 48, 3464–3474 (2003).

    Article  PubMed  Google Scholar 

  93. Guercio, A. et al. Production of canine mesenchymal stem cells from adipose tissue and their application in dogs with chronic osteoarthritis of the humeroradial joints. Cell Biol. Int. 36, 189–194 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Diekman, B. O. et al. Intra-articular delivery of purified mesenchymal stem cells from C57BL/6 or MRL/MpJ superhealer mice prevents post-traumatic arthritis. Cell Transplant. 22, 1395–1408 (2013).

    Article  PubMed  Google Scholar 

  95. Davatchi, F., Abdollahi, B. S., Mohyeddin, M., Shahram, F. & Nikbin, B. Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. Int. J. Rheum. Dis. 14, 211–215 (2011).

    Article  PubMed  Google Scholar 

  96. Levick, J. R. Permeability of rheumatoid and normal human synovium to specific plasma proteins. Arthritis Rheum. 24, 1550–1560 (1981).

    Article  CAS  PubMed  Google Scholar 

  97. Simkin, P. A. & Bassett, J. E. Pathways of microvascular permeability in the synovium of normal and diseased human knees. J. Rheumatol. 38, 2635–2642 (2011).

    Article  PubMed  Google Scholar 

  98. US National Library of Medicine. ClinicalTrials.gov[online], (2007).

  99. US National Library of Medicine. ClinicalTrials.gov[online], (2008).

  100. Fiocco, U. et al. Synovial biomarkers in psoriatic arthritis. J. Rheumatol. (Suppl.) 89, 61–64 (2012).

    CAS  Google Scholar 

  101. US National Library of Medicine. ClinicalTrials.gov[online], (2007).

  102. US National Library of Medicine. ClinicalTrials.gov[online], (2010).

  103. US National Library of Medicine. ClinicalTrials.gov[online], (2011).

  104. US National Library of Medicine. ClinicalTrials.gov[online], (2010).

  105. US National Library of Medicine. ClinicalTrials.gov[online], (2013).

  106. US National Library of Medicine. ClinicalTrials.gov[online], (2008).

  107. US National Library of Medicine. ClinicalTrials.gov[online], (2012).

  108. US National Library of Medicine. ClinicalTrials.gov[online], (2012).

  109. US National Library of Medicine. ClinicalTrials.gov[online], (2012).

  110. US National Library of Medicine. ClinicalTrials.gov[online], (2011).

  111. US National Library of Medicine. ClinicalTrials.gov[online], (2011).

  112. US National Library of Medicine. ClinicalTrials.gov[online], (2013).

  113. US National Library of Medicine. ClinicalTrials.gov[online], (2013).

  114. US National Library of Medicine. ClinicalTrials.gov[online], (2012).

  115. US National Library of Medicine. ClinicalTrials.gov[online], (2010).

  116. Ha, C. W., Noh, M. J., Choi, K. B. & Lee, K. H. Initial phase I safety of retrovirally transduced human chondrocytes expressing transforming growth factor-b-1 in degenerative arthritis patients. Cytotherapy 14, 247–256 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. US National Library of Medicine. ClinicalTrials.gov[online], (2012).

  118. US National Library of Medicine. ClinicalTrials.gov[online], (2013).

  119. Ha, C. W. et al. Efficacy of TissueGene-C (TG-C), a cell mediated gene therapy, in patients with osteoarthritis: a phase IIa clinical study [abstract 48.05]. J. Tissue Eng. Regen. Med. 6 (Suppl. 1), 287 (2012).

    Google Scholar 

  120. US National Library of Medicine. ClinicalTrials.gov[online], (2012).

  121. US National Library of Medicine. ClinicalTrials.gov[online], (2012).

  122. US National Library of Medicine. ClinicalTrials.gov[online], (2011).

  123. US National Library of Medicine. ClinicalTrials.gov[online], (2011).

  124. US National Library of Medicine. ClinicalTrials.gov[online], (2010).

  125. US National Library of Medicine. ClinicalTrials.gov[online], (2011).

  126. US National Library of Medicine. ClinicalTrials.gov[online], (2011).

  127. US National Library of Medicine. ClinicalTrials.gov[online], (2013).

  128. US National Library of Medicine. ClinicalTrials.gov[online], (2011).

  129. US National Library of Medicine. ClinicalTrials.gov[online], (2012).

  130. US National Library of Medicine. ClinicalTrials.gov[online], (2012).

  131. US National Library of Medicine. ClinicalTrials.gov[online], (2012).

  132. US National Library of Medicine. ClinicalTrials.gov[online], (2013).

  133. US National Library of Medicine. ClinicalTrials.gov[online], (2009).

  134. US National Library of Medicine. ClinicalTrials.gov[online], (2010).

  135. US National Library of Medicine. ClinicalTrials.gov[online], (2013).

  136. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  137. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  138. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  139. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  140. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  141. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  142. US National Library of Medicine. ClinicalTrials.gov[online], (2012).

  143. US National Library of Medicine. ClinicalTrials.gov[online], (2013).

  144. US National Library of Medicine. ClinicalTrials.gov[online], (2013).

  145. US National Library of Medicine. ClinicalTrials.gov[online], (2013).

  146. US National Library of Medicine. ClinicalTrials.gov[online], (2013).

Download references

Acknowledgements

The authors would like to acknowledge financial support from NIAMS in the form of the following grants: P01AR050245, R01AR047442, R01AR051085, X01 NS066865.

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to all aspects of the preparation of this manuscript.

Corresponding author

Correspondence to Christopher H. Evans.

Ethics declarations

Competing interests

C. H. Evans declares that he acts as a consultant for TissueGene Inc. and holds stock in Orthogen AG. L. A. Setton declares that she holds stock in PhaseBio. V. B. Kraus declares that she has received royalties from PhaseBio.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, C., Kraus, V. & Setton, L. Progress in intra-articular therapy. Nat Rev Rheumatol 10, 11–22 (2014). https://doi.org/10.1038/nrrheum.2013.159

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2013.159

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing